Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (1): 2012080.doi: 10.3866/PKU.WHXB202012080
Special Issue: Graphene: Functions and Applications
• REVIEW • Previous Articles Next Articles
Lai-Peng Ma1,2, Wencai Ren1,2,*(), Hui-Ming Cheng1,2,3
Received:
2020-12-29
Accepted:
2021-01-26
Published:
2021-02-03
Contact:
Wencai Ren
E-mail:wcren@imr.ac.cn
About author:
Wencai Ren. Email: wcren@imr.ac.cnSupported by:
Lai-Peng Ma, Wencai Ren, Hui-Ming Cheng. Progress in Surface Charge Transfer Doping of Graphene[J]. Acta Phys. -Chim. Sin. 2022, 38(1), 2012080. doi: 10.3866/PKU.WHXB202012080
Fig 1
Anti-reflective doping of graphene by HTB for high-performance flexible transparent conductive film 4. (a) Schematic anti-reflection effect of HTB coating on graphene/PET film. (b) Optoelectronic performance comparison of HTB-coated graphene with representative doped flexible graphene films and ITO. Inset: a photograph of large-area flexible HTB-coated monolayer graphene/PET film (10 × 10 cm2). (c) Maximum PE, CE and (d) maximum EQE comparison of flexible green OLEDs using HTB-coated graphene anode with other state-of-the-art flexible green OLEDs using different anodes without light extraction structures. Adapted from National Academy of Sciences."
Fig 2
APTES-GO 2D doping layer for multilayer graphene transparent conductive film 48. (a) Schematic of graphene transparent conductive film composed of stacked graphene and 2D doping layers; (b) Carrier density before and after doping graphene; (d) Air and thermal stabilities of APTES-GO/graphene. Adapted from WILEY-VCH Verlag GmbH."
Fig 3
Stable p-doped large-area bilayer graphene film by MoCl5 intercalation 21. (a) Raman spectra of bilayer graphene after doping with MoCl5; (b) Time dependence of sheet resistance of bilayer graphene; (c) Optical transmission spectra of pristine and intercalated twist-rich bilayer graphene. Adapted from WILEY-VCH Verlag GmbH."
Fig 4
UV-epoxy-enabled stable doping and intact transfer of graphene for flexible transparent conductive film 15. (a) Sheet resistance variation of UV-epoxy-transferred graphene films over time (inset shows the reaction to generate the dopant HSbF6 inside UV-epoxy); (b) Hole concentration variation of doped graphene with the concentration of HSbF6; Inset: UPS spectra of doped graphene with varying concentrations of HSbF6; (c) Photograph of the assembled 10 in. tablet computer with the graphene-based touch panel; Inset: photograph of a 2m-long flexible graphene transparent conductive film. Adapted from American Chemical Society Publication."
Table 1
Typical surface charge transfer dopants for graphene."
Type | Dopant | Graphene No. of layers | Carrier concentration of doped graphene/cm-2 | Doping stability | Doping process | Ref. |
p-type | NO2 | 1 | ~4.5 × 1013 | Low | RT, low pressure | |
HNO3 | 1 | (1-2) × 1013 | Low | RT, solution immersion | ||
SOCl2 | 1 | 1.7 × 1013 | Low | 140 ℃, solution immersion | ||
HSbF6 | 1 | 2.5 × 1013 | Moderate | RT, solution immersion | ||
AuCl3 | 1 | ~5.8 × 1013 | Low | RT, solution immersion | ||
FeCl3 | 4 | 8.9 × 1014 | High | 360 ℃, vacuum | ||
MoCl5 | 2 | 1.4 × 1014 | Moderate | 225 ℃, vacuum | ||
MoOx | 1 | 2.5 × 1013 | Low | RT, vacuum deposition | ||
TFSA | 1 | ~2.4 × 1013 | Moderate | RT, solution immersion | ||
PFSA | 4 | 1.3 × 1013 | High | RT, spin coating | ||
P(VDF-TrFE) | 1 | 3 × 1013 | - | RT, polarization | ||
F13-SAM | 1 | < 1 × 1014 | - | RT, solution immersion | ||
Parylene | 1 | 1.2 × 1013 | - | RT, vacuum deposition | ||
HTB | 1 | 3.4 × 1013 | Moderate | RT, solution immersion | ||
GO | 1 | - | Moderate | RT, surface coating | ||
Amorphous carbon | 1 | 2 × 1013 | High | 400 ℃, vapor deposition | ||
n-type | Li | > 8 | 6 × 1014 | Low | RT, intercalation | |
K | 1 | 5.5 × 1014 | Low | RT, vacuum deposition | ||
PEI | 1 | 1.6 × 1013 | - | RT, solution immersion | ||
N2H4 | 1 | 0.7 × 1013 | - | RT, solution immersion | ||
TETA | 1 | 1.4 × 1013 | Low | 70 ℃, vapor treatment | ||
APTES-GO | 1 | 1.6 × 1013 | Low | RT, surface coating | ||
DRSP | 1 | 0.2 × 1013 | - | RT, solution immersion | ||
TiOx | 1 | 2 × 1013 | - | RT, illumination |
1 |
Bonaccorso F. ; Sun Z. ; Hasan T. ; Ferrari A. C. Nat. Photon. 2010, 4, 611.
doi: 10.1038/Nphoton.2010.186 |
2 |
Ellmer K. Nat. Photon. 2012, 6, 808.
doi: 10.1038/Nphoton.2012.282 |
3 |
Du J. H. ; Pei S. F. ; Ma L. P. ; Cheng H. M. Adv. Mater. 2014, 26, 1958.
doi: 10.1002/adma.201304135 |
4 |
Ma L. P. ; Wu Z. B. ; Yin L. C. ; Zhang D. D. ; Dong S. C. ; Zhang Q. ; Chen M. L. ; Ma W. ; Zhang Z. B. ; Du J. H. ; et al Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 25991.
doi: 10.1073/pnas.1922521117 |
5 |
Qiu C. G. ; Liu F. ; Xu L. ; Deng B. ; Xiao M. M. ; Si J. ; Lin L. ; Zhang Z. Y. ; Wang J. ; Guo H. ; et al Science 2018, 361, 387.
doi: 10.1126/science.aap9195 |
6 |
Biswas C. ; Lee Y. H. Adv. Funct. Mater. 2011, 21, 3806.
doi: 10.1002/adfm.201101241 |
7 |
Das A. ; Pisana S. ; Chakraborty B. ; Piscanec S. ; Saha S. K. ; Waghmare U. V. ; Novoselov K. S. ; Krishnamurthy H. R. ; Geim A. K. ; Ferrari A. C. ; et al Nat. Nanotechnol. 2008, 3, 210.
doi: 10.1038/nnano.2008.67 |
8 |
Zhu H. Y. ; Gan X. ; McCreary A. ; Lv R. T. ; Lin Z. ; Terrones M. Nano Today 2020, 30, 100829.
doi: 10.1016/j.nantod.2019.100829 |
9 | Lin, L.; Li, J. Y.; Yuan, Q. H.; Li, Q. C.; Zhang, J. C.; Sun, L. Z.; Rui, D. R.; Chen, Z. L.; Jia, K. C.; Wang, M. Z.; et al. Sci. Adv. 2019, 5, eaaw8337. doi: 10.1126/sciadv.aaw8337 |
10 |
Zhang X. J. ; Shao Z. B. ; Zhang X. H. ; He Y. Y. ; Jie J. S. Adv. Mater. 2016, 28, 10409.
doi: 10.1002/adma.201601966 |
11 |
Liu H. T. ; Liu Y. Q. ; Zhu D. B. J. Mater. Chem. 2011, 21, 3335.
doi: 10.1039/c0jm02922j |
12 |
Bae S. ; Kim H. ; Lee Y. ; Xu X. F. ; Park J. S. ; Zheng Y. ; Balakrishnan J. ; Lei T. ; Kim H. R. ; Song Y. I. ; et al Nat. Nanotechnol. 2010, 5, 574.
doi: 10.1038/Nnano.2010.132 |
13 |
Kasry A. ; Kuroda M. A. ; Martyna G. J. ; Tulevski G. S. ; Bol A. A. ACS Nano 2010, 4, 3839.
doi: 10.1021/nn100508g |
14 |
Wang Y. ; Tong S. W. ; Xu X. F. ; Ozyilmaz B. ; Loh K. P. Adv. Mater. 2011, 23, 1514.
doi: 10.1002/adma.201003673 |
15 |
Ma L. P. ; Dong S. C. ; Chen M. L. ; Ma W. ; Sun D. M. ; Gao Y. ; Ma T. ; Cheng H. M. ; Ren W. C. ACS Appl. Mater. Interfaces 2018, 10, 40756.
doi: 10.1021/acsami.8b13686 |
16 |
Jung N. ; Kim N. ; Jockusch S. ; Turro N. J. ; Kim P. ; Brus L. Nano Lett. 2009, 9, 4133.
doi: 10.1021/nl902362q |
17 |
Crowther A. C. ; Ghassaei A. ; Jung N. ; Brus L. E. ACS Nano 2012, 6, 1865.
doi: 10.1021/nn300252a |
18 |
Yuan J. T. ; Ma L. P. ; Pei S. F. ; Du J. H. ; Su Y. ; Ren W. C. ; Cheng H. M. ACS Nano 2013, 7, 4233.
doi: 10.1021/nn400682u |
19 |
Khrapach I. ; Withers F. ; Bointon T. H. ; Polyushkin D. K. ; Barnes W. L. ; Russo S. ; Craciun M. F. Adv. Mater. 2012, 24, 2844.
doi: 10.1002/adma.201200489 |
20 |
Ho P. H. ; Chen C. H. ; Shih F. Y. ; Chang Y. R. ; Li S. S. ; Wang W. H. ; Shih M. C. ; Chen W. T. ; Chiu Y. P. ; Li M. K. ; et al Adv. Mater. 2015, 27, 7809.
doi: 10.1002/adma.201503592 |
21 |
Kinoshita H. ; Jeon I. ; Maruyama M. ; Kawahara K. ; Terao Y. ; Ding D. ; Matsumoto R. ; Matsuo Y. ; Okada S. ; Ago H. Adv. Mater. 2017, 29, 1702141.
doi: 10.1002/adma.201702141 |
22 |
Park I. J. ; Kim T. I. ; Yoon T. ; Kang S. ; Cho H. ; Cho N. S. ; Lee J. I. ; Kim T. S. ; Choi S. Y. Adv. Funct. Mater. 2018, 28, 1704435.
doi: 10.1002/Adfm.201704435 |
23 |
Kim K. K. ; Reina A. ; Shi Y. M. ; Park H. ; Li L. J. ; Lee Y. H. ; Kong J. Nanotechnology 2010, 21, 285205.
doi: 10.1088/0957-4484/21/28/285205 |
24 |
Chandramohan S. ; Seo T. H. ; Janardhanam V. ; Hong C. H. ; Suh E. K. Appl. Surf. Sci. 2017, 418, 258.
doi: 10.1016/j.apsusc.2017.01.097 |
25 |
Farmer D. B. ; Golizadeh-Mojarad R. ; Perebeinos V. ; Lin Y. M. ; Tulevski G. S. ; Tsang J. C. ; Avouris P. Nano Lett. 2009, 9, 388.
doi: 10.1021/nl803214a |
26 |
Dong X. C. ; Fu D. L. ; Fang W. J. ; Shi Y. M. ; Chen P. ; Li L. J. Small 2009, 5, 1422.
doi: 10.1002/smll.200801711 |
27 |
Yokota K. ; Takai K. ; Enoki T. Nano Lett. 2011, 11, 3669.
doi: 10.1021/nl201607t |
28 |
Tongay S. ; Berke K. ; Lemaitre M. ; Nasrollahi Z. ; Tanner D. B. ; Hebard A. F. ; Appleton B. R. Nanotechnology 2011, 22, 425701.
doi: 10.1088/0957-4484/22/42/425701 |
29 |
Lee W. H. ; Suk J. W. ; Lee J. ; Hao Y. F. ; Park J. ; Yang J. W. ; Ha H. W. ; Murali S. ; Chou H. ; Akinwande D. ; et al ACS Nano 2012, 6, 1284.
doi: 10.1021/nn203998j |
30 |
Li N. ; Oida S. ; Tulevski G. S. ; Han S. J. ; Hannon J. B. ; Sadana D. K. ; Chen T. C. Nat. Commun. 2013, 4, 2294.
doi: 10.1038/Ncomms3294 |
31 |
Wei P. ; Liu N. ; Lee H. R. ; Adijanto E. ; Ci L. J. ; Naab B. D. ; Zhong J. Q. ; Park J. ; Chen W. ; Cui Y. ; et al Nano Lett. 2013, 13, 1890.
doi: 10.1021/nl303410g |
32 |
Yun J. M. ; Park S. ; Hwang Y. H. ; Lee E. S. ; Maiti U. ; Moon H. ; Kim B. H. ; Bae B. S. ; Kim Y. H. ; Kim S. O. ACS Nano 2014, 8, 650.
doi: 10.1021/nn4053099 |
33 |
Sojoudi H. ; Baltazar J. ; Tolbert L. ; Henderson C. ; Graham S. Adv. Mater. Interfaces 2014, 1, 1400378.
doi: 10.1002/admi.201400378 |
34 |
Lee B. H. ; Lee J. H. ; Kahng Y. H. ; Kim N. ; Kim Y. J. ; Lee J. ; Lee T. ; Lee K. Adv. Funct. Mater. 2014, 24, 1847.
doi: 10.1002/adfm.201302928 |
35 |
Cha M. J. ; Song W. ; Kim Y. ; Jung D. S. ; Jung M. W. ; Lee S. I. ; Adhikari P. D. ; An K. S. ; Park C. Y. RSC Adv. 2014, 4, 37849.
doi: 10.1039/c4ra04518a |
36 |
Kim S. J. ; Ryu J. ; Son S. ; Yoo J. M. ; Park J. B. ; Won D. ; Lee E. K. ; Cho S. P. ; Bae S. ; Cho S. ; et al Chem. Mater. 2014, 26, 2332.
doi: 10.1021/cm500335y |
37 |
Kim Y. ; Ryu J. ; Park M. ; Kim E. S. ; Yoo J. M. ; Park J. ; Kang J. H. ; Hong B. H. ACS Nano 2014, 8, 868.
doi: 10.1021/nn405596j |
38 |
Xu W. ; Wang L. ; Liu Y. ; Thomas S. ; Seo H. K. ; Kim K. I. ; Kim K. S. ; Lee T. W. Adv. Mater. 2015, 27, 1619.
doi: 10.1002/adma.201405353 |
39 |
Han T. H. ; Kwon S. J. ; Li N. N. ; Seo H. K. ; Xu W. T. ; Kim K. S. ; Lee T. W. Angew. Chem. Int. Edit. 2016, 55, 6197.
doi: 10.1002/anie.201600414 |
40 |
Seo S. W. ; Lee H. S. ; Shin D. H. ; Kim J. H. ; Jang C. W. ; Kim J. M. ; Kim S. ; Choi S. H. Nanotechnology 2017, 28, 425203.
doi: 10.1088/1361-6528/aa8533 |
41 |
Kwon S. J. ; Han T. H. ; Ko T. Y. ; Li N. ; Kim Y. ; Kim D. J. ; Bae S. H. ; Yang Y. ; Hong B. H. ; Kim K. S. ; et al Nat. Commun. 2018, 9, 2037.
doi: 10.1038/s41467-018-04385-4 |
42 |
He H. ; Kim K. H. ; Danilov A. ; Montemurro D. ; Yu L. Y. ; Park Y. W. ; Lombardi F. ; Bauch T. ; Moth-Poulsen K. ; Lakimov T. ; et al Nat. Commun. 2018, 9, 3956.
doi: 10.1038/s41467-018-06352-5 |
43 |
Yu J. J. ; Zhang M. J. ; He J. J. ; Zhang C. F. ; Cui W. W. ; Wang N. ; Huang C. S. Appl. Surf. Sci. 2019, 463, 900.
doi: 10.1016/j.apsusc.2018.09.021 |
44 |
Bianco G. V. ; Sacchetti A. ; Milella A. ; Grande M. ; D'Orazio A. ; Capezzuto P. ; Bruno G. Carbon 2020, 170, 75.
doi: 10.1016/j.carbon.2020.07.038 |
45 |
Tavakoli M. M. ; Azzellino G. ; Hempel M. ; Lu A. Y. ; Martin-Martinez F. J. ; Zhao J. Y. ; Yeo J. J. ; Palacios T. ; Buehler M. J. ; Kong J. Adv. Funct. Mater. 2020, 30, 2001924.
doi: 10.1002/adfm.202001924 |
46 |
Ni G. X. ; Zheng Y. ; Bae S. ; Tan C. Y. ; Kahya O. ; Wu J. ; Hong B. H. ; Yao K. ; Ozyilmaz B. ACS Nano 2012, 6, 3935.
doi: 10.1021/nn3010137 |
47 |
Kim H. ; Kim H. H. ; Jang J. I. ; Lee S. K. ; Lee G. W. ; Han J. T. ; Cho K. Adv. Mater. 2014, 26, 8141.
doi: 10.1002/adma.201403196 |
48 |
Seo Y. M. ; Cho H. J. ; Jang H. S. ; Jang W. ; Lim J. Y. ; Jang Y. ; Gu T. ; Choi J. Y. ; Whang D. Adv. Electron. Mater. 2018, 4, 1700622.
doi: 10.1002/aelm.201700622 |
49 |
Chugh S. ; Adhikar N. ; Lee J. H. ; Berman D. ; Echegoyen L. ; Kaul A. B. ACS Appl. Mater. Inter. 2019, 11, 24349.
doi: 10.1021/acsami.9b00603 |
50 |
Yang J. H. ; Yang H. W. ; Jun B. O. ; Shin J. H. ; Kim S. ; Jang A. R. ; Yoon S. I. ; Shin H. S. ; Park D. ; Park K. ; et al Adv. Funct. Mater. 2019, 29, 1808057.
doi: 10.1002/adfm.201808057 |
51 |
Gierz I. ; Riedl C. ; Starke U. ; Ast C. R. ; Kern K. Nano Lett. 2008, 8, 4603.
doi: 10.1021/nl802996s |
52 |
Ren Y. J. ; Chen S. S. ; Cai W. W. ; Zhu Y. W. ; Zhu C. F. ; Ruoff R. S. Appl. Phys. Lett. 2010, 97, 053107.
doi: 10.1063/1.3471396 |
53 |
Kim M. ; Kim K. J. ; Lee S. J. ; Kim H. M. ; Cho S. Y. ; Kim M. S. ; Kim S. H. ; Kim K. B. ACS Appl. Mater. Interfaces 2017, 9, 701.
doi: 10.1021/acsami.6b12622 |
54 |
Jung N. ; Kim B. ; Crowther A. C. ; Kim N. ; Nuckolls C. ; Brus L. ACS Nano 2011, 5, 5708.
doi: 10.1021/nn201368g |
55 |
Bao W. Z. ; Wan J. Y. ; Han X. G. ; Cai X. H. ; Zhu H. L. ; Kim D. H. ; Ma D. K. ; Xu Y. L. ; Munday J. N. ; Drew H. D. ; et al Nat. Commun. 2014, 5, 4224.
doi: 10.1038/Ncomms5224 |
56 |
Rosenzweig P. ; Karakachian H. ; Marchenko D. ; Kuster K. ; Starke U. Phys. Rev. Lett. 2020, 125, 176403.
doi: 10.1103/PhysRevLett.125.176403 |
57 |
Eda G. ; Lin Y. Y. ; Miller S. ; Chen C. W. ; Su W. F. ; Chhowalla M. Appl. Phys. Lett. 2008, 92, 233305.
doi: 10.1063/1.2937846 |
58 |
Cui T. X. ; Lv R. T. ; Huang Z. H. ; Chen S. X. ; Zhang Z. X. ; Gan X. ; Jia Y. ; Li X. M. ; Wang K. L. ; Wu D. H. ; et al J. Mater. Chem. A 2013, 1, 5736.
doi: 10.1039/c3ta01634j |
59 |
Ojeda-Aristizabal C. ; Santos E. J. G. ; Onishi S. ; Yan A. M. ; Rasool H. I. ; Kahn S. ; Lv Y. C. ; Latzke D. W. ; Velasco J. ; Crommie M. F. ; et al ACS Nano 2017, 11, 4686.
doi: 10.1021/acsnano.7b00551 |
60 |
Bult J. B. ; Crisp R. ; Perkins C. L. ; Blackburn J. L. ACS Nano 2013, 7, 7251.
doi: 10.1021/nn402673z |
61 |
De Sanctis A. ; Jones G. F. ; Wehenkel D. J. ; Bezares F. ; Koppens F. H. L. ; Craciun M. F. ; Russo S. Sci. Adv. 2017, 3, e1602617.
doi: 10.1126/sciadv.1602617 |
62 |
De Sanctis A. ; Barnes M. D. ; Amit I. ; Craciun M. F. ; Russo S. Nanotechnology 2017, 28, 124004.
doi: 10.1088/1361-6528/aa5ec0 |
63 |
Kim J. S. ; Kim B. J. ; Choi Y. J. ; Lee M. H. ; Kang M. S. ; Cho J. H. Adv. Mater. 2016, 28, 4803.
doi: 10.1002/adma.201505378 |
64 | Chen Z. L. ; Gao P. ; Liu Z. F. Acta Phys.-Chim. Sin. 2020, 36, 1907004. |
陈召龙; 高鹏; 刘忠范. 物理化学学报, 2020, 36, 1907004.
doi: 10.3866/PKU.WHXB201907004 |
|
65 |
Jia S. ; Sun H. D. ; Du J. H. ; Zhang Z. K. ; Zhang D. D. ; Ma L. P. ; Chen J. S. ; Ma D. G. ; Cheng H. M. ; Ren W. C. Nanoscale 2016, 8, 10714.
doi: 10.1039/c6nr01649a |
66 |
Zhang Z. K. ; Du J. H. ; Zhang D. D. ; Sun H. D. ; Yin L. C. ; Ma L. P. ; Chen J. S. ; Ma D. G. ; Cheng H. M. ; Ren W. C. Nat. Commun. 2017, 8, 14560.
doi: 10.1038/Ncomms14560 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Lianlian Ji, Xianpeng Wang, Yingying Zhang, Xueli Shen, Di Xue, Lu Wang, Zi Wang, Wenchong Wang, Lizhen Huang, Lifeng Chi. In situ and Ex situ Investigation of the Organic-Organic Interface Effect [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304002-. |
[3] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[4] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[5] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[6] | Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210014-0. |
[7] | Mingxu Zhang, Qisen Zhou, Xinyi Mei, Jingxuan Chen, Junming Qiu, Xiuzhi Li, Shuang Li, Mubing Yu, Chaochao Qin, Xiaoliang Zhang. Colloidal Quantum Dot Solids with a Diminished Epitaxial PbI2 Matrix for Efficient Infrared Solar Cells [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210002-0. |
[8] | Zhen Liu, Xiangfu Meng, Wanmiao Gu, Jun Zha, Nan Yan, Qing You, Nan Xia, Hui Wang, Zhikun Wu. Introducing Novel, Multiple Cd Coordination Modes into Gold Nanoclusters by Combined Doping for Enhancing Electrocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212064-. |
[9] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[10] | Junhao Liao, Yixuan Zhao, Zhaoning Hu, Saiyu Bu, Qi Lu, Mingpeng Shang, Kaicheng Jia, Xiaohui Qiu, Qin Xie, Li Lin, Zhongfan Liu. Crack-Free Transfer of Graphene Wafers via Photoresist as Transfer Medium [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306038-. |
[11] | Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307028-. |
[12] | Jiawei Yang, Chunyang Zheng, Yahui Pang, Zhongyang Ji, Yurui Li, Jiayi Hu, Jiangrui Zhu, Qi Lu, Li Lin, Zhongfan Liu, Qingmei Hu, Baolu Guan, Jianbo Yin. Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307012-. |
[13] | Zhenfei Gao, Qingquan Song, Zhihua Xiao, Zhaolong Li, Tao Li, Jiajun Luo, Shanshan Wang, Wanli Zhou, Lanying Li, Junrong Yu, Jin Zhang. Submicron-Sized, High Crystalline Graphene-Reinforced Meta-Aramid Fibers with Enhanced Tensile Strength [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307046-. |
[14] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[15] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
|