Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (6): 2106008.doi: 10.3866/PKU.WHXB202106008
Special Issue: Surface and Interface Engineering for Electrochemical Energy Storage and Conversion
• PERSPECTIVE • Previous Articles Next Articles
Guangtao Cong1,*(), Yi-Chun Lu2,*()
Received:
2021-06-02
Accepted:
2021-07-01
Published:
2021-07-07
Contact:
Guangtao Cong,Yi-Chun Lu
E-mail:gtcong@szu.edu.cn;yichunlu@mae.cuhk.edu.hk
About author:
Email: yichunlu@mae.cuhk.edu.hk (Y.L.)Supported by:
Guangtao Cong, Yi-Chun Lu. Strategies to Improve the Energy Density of Non-Aqueous Organic Redox Flow Batteries[J]. Acta Phys. -Chim. Sin. 2022, 38(6), 2106008. doi: 10.3866/PKU.WHXB202106008
"
# | Molecule | Electrolyte | Solubility | Redox potential/V vs. Ag/Ag+ | Ref. |
1 | 1.2 mol·L-1 TEA-TFSI in MeCN | 2.0 mol·L-1 in MeCN | -1.64 | ||
2 | 0.1 mol·L-1 TEABF4 in MeCN | 4.3 mol·L-1 in MeCN | -2.16 | ||
3 | 1.0 mol·L-1 LiTFSI in DME | 0.7 mol·L-1 in DME | -1.79 | ||
4 | 0.5 mol·L-1 TEAPF6 in MeCN | 0.01 mol·L-1 in MeCN | -1.97 | ||
5 | 0.1 mol·L-1 LiBF4 in MeCN | 1.6 mol·L-1 in MeCN | -1.0 and -1.4 | ||
6 | 1.0 mol·L-1 TEABF4 in MeCN | 0.47 mol·L-1 in MeCN | -1.33 and -1.89 | ||
7 | 1.0 mol·L-1 LiTFSI/MeCN | 5.7 mol·L-1 in MeCN | -1.58 |
"
# | Molecule | Electrolyte | Solubility | Redox potential/V vs. Li/Li+ | Ref. |
1 | 0.2 mol·L–1 LiBF4 in PC b | 0.18 mol·L–1 | 4.0 | ||
2 | 0.2 mol·L–1 LiBF4 in PC b | Liquid | 4.0 | ||
3 | 0.2 mol·L–1 LiBF4 in PC b | liquid | 4.0 | ||
4 | 0.2 mol·L–1 LiBF4 in PC b | liquid | 4.0 | ||
5 | 0.5 mol·L–1 LiPF6 in MeCN | 1.7 mol·L–1 | 0.8 a | ||
6 | 0.5 mol·L–1 TBAPF6 in MeCN | 0.58 mol·L–1 | 1.33 a | ||
7 | 0.5 mol·L–1 TBAPF6 in MeCN | 1.5 mol·L–1 | 0.82 a |
"
Strategies | Advantages | Disadvantages | |
Expanding the cell voltage | Developing low-potential anolytes | Widen the output voltage without obviously affecting the properties of electrolytes | Require electrolytes with low cathodic limits |
Developing high-potential catholytes | Widen the output voltage without obviously affecting the properties of electrolytes | Require electrolytes with high anodic limits | |
Maximizing the concentration of the ROMs | Molecular engineering of the organic molecule | Efficient Quantum mechanics assisted molecular optimization. | Time consuming synthesis of ROMs, high viscosity, precipitation of salt and ROMs |
Eutectic electrolyte | Low material cost, facile preparation process | High viscosity, precipitation of salt and ROMs | |
Semi-solid suspension | Low material cost, facile preparation process | Phase separation, salt precipitation, high viscosity and energy input | |
Redox-targeting approach | Multiply the energy density without obviously affecting the properties of electrolytes | Low power output | |
Achieving reversible multi-electron transfer | Multiply the energy density without obviously affecting the properties of electrolytes | High reactivity, poor lifetime of high valence state ROMs |
1 |
Soloveichik G. L. Chem. Rev. 2015, 115, 11533.
doi: 10.1021/cr500720t |
2 |
Winsberg J. ; Hagemann T. ; Janoschka T. ; Hager M. D. ; Schubert U. S. Angew. Chem. Int. Ed. 2017, 56, 686.
doi: 10.1002/anie.201604925 |
3 |
Wei X. ; Pan W. ; Duan W. ; Hollas A. ; Yang Z. ; Li B. ; Nie Z. ; Liu J. ; Reed D. ; Wang W. ; et al ACS Energy Lett. 2017, 2, 2187.
doi: 10.1021/acsenergylett.7b00650 |
4 |
Muench S. ; Wild A. ; Friebe C. ; Häupler B. ; Janoschka T. ; Schubert U. S. Chem. Rev. 2016, 116, 9438.
doi: 10.1021/acs.chemrev.6b00070 |
5 |
Chen H. ; Cong G. ; Lu Y. C. J. Energy Chem. 2018, 27, 1304.
doi: 10.1016/j.jechem.2018.02.009 |
6 |
Yao Y. ; Lei J. ; Shi Y. ; Ai F. ; Lu Y. C. Nat. Energy 2021, 6, 582.
doi: 10.1038/s41560-020-00772-8 |
7 |
Li Z. ; Lu Y. C. Nat. Energy 2021, 6, 517.
doi: 10.1038/s41560-021-00804-x |
8 |
Wang C. ; Li X. ; Yu B. ; Wang Y. ; Yang Z. ; Wang H. ; Lin H. ; Ma J. ; Li G. ; Jin Z. ACS Energy Lett. 2020, 5, 411.
doi: 10.1021/acsenergylett.9b02676 |
9 |
Wang C. ; Yang Z. ; Wang Y. ; Zhao P. ; Yan W. ; Zhu G. ; Ma L. ; Yu B. ; Wang L. ; Li G. ; et al ACS Energy Lett. 2018, 3, 2404.
doi: 10.1021/acsenergylett.8b01296 |
10 |
Wang C. ; Yu B. ; Liu Y. ; Wang H. ; Zhang Z. ; Xie C. ; Li X. ; Zhang H. ; Jin Z. Energy Stor. Mater. 2021, 36, 417.
doi: 10.1016/j.ensm.2021.01.019 |
11 |
Kwabi D. G. ; Ji Y. ; Aziz M. J. Chem. Rev. 2020, 120, 6467.
doi: 10.1021/acs.chemrev.9b00599 |
12 |
Singh V. ; Kim S. ; Kang J. ; Byon H. R. Nano Res. 2019, 12, 1988.
doi: 10.1007/s12274-019-2355-2 |
13 |
Gentil S. ; Reynard D. ; Girault H. H. Curr. Opin. Electrochem. 2020, 21, 7.
doi: 10.1016/j.coelec.2019.12.006 |
14 |
Polcari D. ; Dauphin-Ducharme P. ; Mauzeroll J. Chem. Rev. 2016, 116, 13234.
doi: 10.1021/acs.chemrev.6b00067 |
15 |
Remya G. S. ; Suresh C. H. Phys. Chem. Chem. Phys. 2016, 18, 20615.
doi: 10.1039/C6CP02936A |
16 | McMurry J. E. Organic Chemistry, 8th ed. Boston: Cengage Learning, 2012. |
17 |
Williams D. L. ; Byrne J. J. ; Driscoll J. S. J. Electrochem. Soc. 1969, 116, 2.
doi: 10.1149/1.2411755 |
18 |
Wei X. ; Xu W. ; Huang J. ; Zhang L. ; Walter E. ; Lawrence C. ; Vijayakumar M. ; Henderson W. A. ; Liu T. ; Cosimbescu L. ; et al Angew. Chem. Int. Ed. 2015, 54, 8684.
doi: 10.1002/anie.201501443 |
19 |
Xing X. ; Huo Y. ; Wang X. ; Zhao Y. ; Li Y. Int. J. Hydrogen Energy 2017, 42, 17488.
doi: 10.1016/j.ijhydene.2017.03.034 |
20 |
Li Z. ; Li S. ; Liu S. ; Huang K. ; Fang D. ; Wang F. ; Peng S. Electrochem. Solid-State Lett. 2011, 14, A171.
doi: 10.1149/2.012112esl |
21 |
Huang J. ; Yang Z. ; Vijayakumar M. ; Duan W. ; Hollas A. ; Pan B. ; Wang W. ; Wei X. ; Zhang L. Adv. Sustain. Syst. 2018, 2, 1700131.
doi: 10.1002/adsu.201700131 |
22 |
Sevov C. S. ; Brooner R. E. M. ; Chénard E. ; Assary R. S. ; Moore J. S. ; Rodríguez-López J. ; Sanford M. S. J. Am. Chem. Soc. 2015, 137, 14465.
doi: 10.1021/jacs.5b09572 |
23 |
Wei X. ; Duan W. ; Huang J. ; Zhang L. ; Li B. ; Reed D. ; Xu W. ; Sprenkle V. ; Wang W. ACS Energy Lett. 2016, 1, 705.
doi: 10.1021/acsenergylett.6b00255 |
24 |
Xing X. ; Liu Q. ; Li J. ; Han Z. ; Wang B. ; Lemmon J. P. Chem. Commun. 2019, 55, 14214.
doi: 10.1039/C9CC07937H |
25 |
Duan W. ; Huang J. ; Kowalski J. A. ; Shkrob I. A. ; Vijayakumar M. ; Walter E. ; Pan B. ; Yang Z. ; Milshtein J. D. ; Li B. ; et al ACS Energy Lett. 2017, 2, 1156.
doi: 10.1021/acsenergylett.7b00261 |
26 |
McClelland B. J. Chem. Rev. 1964, 64, 301.
doi: 10.1021/cr60229a005 |
27 |
Holy N. L. Chem. Rev. 1974, 74, 243.
doi: 10.1021/cr60288a005 |
28 |
Gong K. ; Fang Q. ; Gu S. ; Li S. F. Y. ; Yan Y. Energy Environ. Sci. 2015, 8, 3515.
doi: 10.1039/C5EE02341F |
29 |
Yu J. ; Hu Y. S. ; Pan F. ; Zhang Z. ; Wang Q. ; Li H. ; Huang X. ; Chen L. Nat. Commun. 2017, 8, 14629.
doi: 10.1038/ncomms14629 |
30 |
Wang G. ; Huang B. ; Liu D. ; Zheng D. ; Harris J. ; Xue J. ; Qu D. J. Mater. Chem. A 2018, 6, 13286.
doi: 10.1039/C8TA03221A |
31 |
Cong G. ; Wang W. ; Lai N. C. ; Liang Z. ; Lu Y. C. Nat. Mater. 2019, 18, 390.
doi: 10.1038/s41563-019-0286-7 |
32 |
Zhang L. ; Zhang Z. ; Redfern P. C. ; Curtiss L. A. ; Amine K. Energy Environ. Sci. 2012, 5, 8204.
doi: 10.1039/C2EE21977H |
33 |
Huang J. ; Cheng L. ; Assary R. S. ; Wang P. ; Xue Z. ; Burrell A. K. ; Curtiss L. A. ; Zhang L. Adv. Energy Mater. 2015, 5, 1401782.
doi: 10.1002/aenm.201401782 |
34 |
Sevov C. S. ; Samaroo S. K. ; Sanford M. S. Adv. Energy Mater. 2017, 7, 1602027.
doi: 10.1002/aenm.201602027 |
35 |
Yan Y. ; Robinson S. G. ; Sigman M. S. ; Sanford M. S. J. Am. Chem. Soc. 2019, 141, 15301.
doi: 10.1021/jacs.9b07345 |
36 |
Robinson S. G. ; Yan Y. ; Hendriks K. H. ; Sanford M. S. ; Sigman M. S. J. Am. Chem. Soc. 2019, 141, 10171.
doi: 10.1021/jacs.9b04270 |
37 |
Shrestha A. ; Hendriks K. H. ; Sigman M. S. ; Minteer S. D. ; Sanford M. S. Chem. - A Eur. J. 2020, 26, 5369.
doi: 10.1002/chem.202000749 |
38 |
Cong G. ; Zhou Y. ; Li Z. ; Lu Y. C. ACS Energy Lett. 2017, 2, 869.
doi: 10.1021/acsenergylett.7b00115 |
39 |
Wang Y. ; Zhou H. Energy Environ. Sci. 2016, 9, 2267.
doi: 10.1039/C6EE00902F |
40 |
Zhang C. ; Zhang L. ; Ding Y. ; Guo X. ; Yu G. ACS Energy Lett. 2018, 3, 2875.
doi: 10.1021/acsenergylett.8b01899 |
41 |
Zhang C. ; Qian Y. ; Ding Y. ; Zhang L. ; Guo X. ; Zhao Y. ; Yu G. Angew. Chem. Int. Ed. 2019, 58, 7045.
doi: 10.1002/anie.201902433 |
42 |
Goeltz J. C. ; Matsushima L. N. Chem. Commun. 2017, 53, 9983.
doi: 10.1039/C7CC04837H |
43 |
Sinclair N. S. ; Poe D. ; Savinell R. F. ; Maginn E. J. ; Wainright J. S. J. Electrochem. Soc. 2021, 168, 020527.
doi: 10.1149/1945-7111/abe28a |
44 |
Zhang C. ; Chen H. ; Qian Y. ; Dai G. ; Zhao Y. ; Yu G. Adv. Mater. 2021, 33, 2008560.
doi: 10.1002/adma.202008560 |
45 |
Zhang C. ; Niu Z. ; Ding Y. ; Zhang L. ; Zhou Y. ; Guo X. ; Zhang X. ; Zhao Y. ; Yu G. Chem 2018, 4, 2814.
doi: 10.1016/j.chempr.2018.08.024 |
46 |
Takechi K. ; Kato Y. ; Hase Y. Adv. Mater. 2015, 27, 2501.
doi: 10.1002/adma.201405840 |
47 |
Cong G. ; Lu Y. C. Chem 2018, 4, 2732.
doi: 10.1016/j.chempr.2018.11.018 |
48 |
Duduta M. ; Ho B. ; Wood V. C. ; Limthongkul P. ; Brunini V. E. ; Carter W. C. ; Chiang Y. M. Adv. Energy Mater. 2011, 1, 511.
doi: 10.1002/aenm.201100152 |
49 |
Chen H. ; Zou Q. ; Liang Z. ; Liu H. ; Li Q. ; Lu Y. C. Nat. Commun. 2015, 6, 5877.
doi: 10.1038/ncomms6877 |
50 |
Chen H. ; Lu Y. C. Adv. Energy Mater. 2016, 6, 1502183.
doi: 10.1002/aenm.201502183 |
51 |
Chen H. ; Zhou Y. ; Lu Y. C. ACS Energy Lett. 2018, 3, 1991.
doi: 10.1021/acsenergylett.8b01257 |
52 |
Zhang X. ; Zhang P. ; Chen H. ChemSusChem 2021, 14, 1913.
doi: 10.1002/cssc.202100094 |
53 |
Wang Q. ; Zakeeruddin S. M. ; Wang D. ; Exnar I. ; Grätzel M. Angew. Chem. Int. Ed. 2006, 45, 8197.
doi: 10.1002/anie.200602891 |
54 |
Jia C. ; Pan F. ; Zhu Y. G. ; Huang Q. ; Lu L. ; Wang Q. Sci. Adv. 2015, 1, e1500886.
doi: 10.1126/sciadv.1500886 |
55 |
Huang Q. ; Yang J. ; Ng C. B. ; Jia C. ; Wang Q. Energy Environ. Sci. 2016, 9, 917.
doi: 10.1039/C5EE03764F |
56 |
Yan R. ; Wang Q. Adv. Mater. 2018, 30, 1802406.
doi: 10.1002/adma.201802406 |
57 |
Yu J. ; Fan L. ; Yan R. ; Zhou M. ; Wang Q. ACS Energy Lett. 2018, 3, 2314.
doi: 10.1021/acsenergylett.8b01420 |
58 |
Chen Y. ; Zhou M. ; Xia Y. ; Wang X. ; Liu Y. ; Yao Y. ; Zhang H. ; Li Y. ; Lu S. ; Qin W. ; et al Joule 2019, 3, 2255.
doi: 10.1016/j.joule.2019.06.007 |
59 |
Cheng Y. ; Wang X. ; Huang S. ; Samarakoon W. ; Xi S. ; Ji Y. ; Zhang H. ; Zhang F. ; Du Y. ; Feng Z. ; et al ACS Energy Lett. 2019, 4, 3028.
doi: 10.1021/acsenergylett.9b01939 |
60 |
Zhou M. ; Chen Y. ; Salla M. ; Zhang H. ; Wang X. ; Mothe S. R. ; Wang Q. Angew. Chem. Int. Ed. 2020, 59, 14286.
doi: 10.1002/anie.202004603 |
61 |
Huang Q. ; Li H. ; Grätzel M. ; Wang Q. Phys. Chem. Chem. Phys. 2013, 15, 1793.
doi: 10.1039/C2CP44466F |
62 |
Zhou M. ; Huang Q. ; Pham Truong T. N. ; Ghilane J. ; Zhu Y. G. ; Jia C. ; Yan R. ; Fan L. ; Randriamahazaka H. ; Wang Q. Chem 2017, 3, 1036.
doi: 10.1016/j.chempr.2017.10.003 |
63 |
Kwon G. ; Lee S. ; Hwang J. ; Shim H. S. ; Lee B. ; Lee M. H. ; Ko Y. ; Jung S. K. ; Ku K. ; Hong J. ; Kang K. Joule 2018, 2, 1771.
doi: 10.1016/j.joule.2018.05.014 |
64 |
Li Z. ; Lu Y. C. Chem 2018, 4, 2020.
doi: 10.1016/j.chempr.2018.08.032 |
65 |
Kwon G. ; Lee K. ; Lee M. H. ; Lee B. ; Lee S. ; Jung S. K. ; Ku K. ; Kim J. ; Park S. Y. ; Kwon J. E. ; et al Chem 2019, 5, 2642.
doi: 10.1016/j.chempr.2019.07.006 |
66 |
Ham Y. ; Ri V. ; Kim J. ; Yoon Y. ; Lee J. ; Kang K. ; An K. S. ; Kim C. ; Jeon S. Nano Res. 2021, 14, 1382.
doi: 10.1007/s12274-020-3187-9 |
67 |
Lee M. ; Hong J. ; Lee B. ; Ku K. ; Lee S. ; Park C. B. ; Kang K. Green Chem. 2017, 19, 2980.
doi: 10.1039/C7GC00849J |
68 |
Lee S. ; Lee K. ; Ku K. ; Hong J. ; Park S. Y. ; Kwon J. E. ; Kang K. Adv. Energy Mater. 2020, 10, 2001635.
doi: 10.1002/aenm.202001635 |
69 |
Attanayake N. H. ; Kowalski J. A. ; Greco K. V. ; Casselman M. D. ; Milshtein J. D. ; Chapman S. J. ; Parkin S. R. ; Brushett F. R. ; Odom S. A. Chem. Mater. 2019, 31, 4353.
doi: 10.1021/acs.chemmater.8b04770 |
70 |
Kowalski J. A. ; Casselman M. D. ; Kaur A. P. ; Milshtein J. D. ; Elliott C. F. ; Modekrutti S. ; Attanayake N. H. ; Zhang N. ; Parkin S. R. ; Risko C. ; et al J. Mater. Chem. A 2017, 5, 24371.
doi: 10.1039/C7TA05883G |
[1] | Dongdong Liu, Chao Chen, Xunhui Xiong. Research Progress on Artificial Protective Films for Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008078-. |
[2] | Wenyi Liu,Linpo Li,Qiuyue Gui,Bohua Deng,Yuanyuan Li,Jinping Liu. Novel Hybrid Supercapacitors Based on Nanoarray Electrodes [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904049-. |
[3] | Pan Zhao,Bingjun Yang,Jiangtao Chen,Junwei Lang,Tianyun Zhang,Xingbin Yan. A Safe, High-Performance, and Long-Cycle Life Zinc-Ion Hybrid Capacitor Based on Three-Dimensional Porous Activated Carbon [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904050-. |
[4] | Xiaobing YANG,Lei ZHAO,Xulei SUI,Linghui MENG,Zhenbo WANG. Ultra-High Proton/Vanadium Selectivity of Polybenzimidazole Membrane by Incorporating Phosphotungstic Acid Functionalized Nanofibers for Vanadium Redox Flow Battery [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1372-1381. |
[5] | Ágnes NAGY. Phase Space View of Ensembles of Excited States [J]. Acta Phys. -Chim. Sin., 2018, 34(5): 492-496. |
[6] | Dong ZHENG,Bei-Jing ZHONG,Tong YAO. Methodology for Formulating Aviation Kerosene Surrogate Fuels and The Surrogate Fuel Model for HEF Kerosene [J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2438-2445. |
[7] | WEN Yue-Hua, GAO Chen, CHENG Jie, PAN Jun-Qing, CAO Gao-Ping, YANG Yu-Sheng. Effect of Electrolyte on the Performance of Electrodes for an All Lead Flow Battery [J]. Acta Phys. -Chim. Sin., 2013, 29(11): 2354-2360. |
[8] | LU Tian, CHEN Fei-Wu. Meaning and Functional Form of the Electron Localization Function [J]. Acta Phys. -Chim. Sin., 2011, 27(12): 2786-2792. |
[9] | LIU Dong-Yang, CHENG Jie, PAN Jun-Qing, WEN Yue-Hua, CAO Gao-Ping, YANG Yu-Sheng. All-Lead Redox Flow Battery in a Fluoroboric Acid Electrolyte [J]. Acta Phys. -Chim. Sin., 2011, 27(11): 2571-2576. |
[10] | ZHANG Jing, KONG Ling-Bin, CAI Jian-Jun, YANG Zhen-Sheng, LUO Yong-Chun, KANG Long. Novel Polypyrrole/Mesoporous Carbon Nanocomposite Electrode for an Electrochemical Hybrid Capacitor [J]. Acta Phys. -Chim. Sin., 2010, 26(06): 1515-1520. |
[11] | LIANG Xiao-Qin; PU Xue-Mei; TIAN An-Min. Structures and Properties of s-Triazine Derivations Substituted by Substitutent Groups Containing Nitrogen [J]. Acta Phys. -Chim. Sin., 2008, 24(04): 639-645. |
[12] | WEN Yue-Hua;ZHANG Hua-Min;QIAN Peng;ZHAO Ping;ZHOU Han-Tao;YI Bao-Lian. Investigations on the Electrode Process of Concentrated V(IV)/V(V) Species in a Vanadium Redox Flow Battery [J]. Acta Phys. -Chim. Sin., 2006, 22(04): 403-408. |
|