Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (2): 1904049.doi: 10.3866/PKU.WHXB201904049
Special Issue: Supercapacitor
• Feature Article • Previous Articles Next Articles
Wenyi Liu1,Linpo Li2,Qiuyue Gui1,Bohua Deng1,Yuanyuan Li2,Jinping Liu1,*()
Received:
2019-04-11
Accepted:
2019-05-14
Published:
2019-05-22
Contact:
Jinping Liu
E-mail:liujp@whut.edu.cn
Supported by:
Wenyi Liu,Linpo Li,Qiuyue Gui,Bohua Deng,Yuanyuan Li,Jinping Liu. Novel Hybrid Supercapacitors Based on Nanoarray Electrodes[J]. Acta Physico-Chimica Sinica 2020, 36(2), 1904049. doi: 10.3866/PKU.WHXB201904049
Fig 3
(a) Schematic illustration of the LIC 10; (b) SEM image of the Li4Ti5O12 nanowire array anode 10; (c) Charge balance between LTO anode and MWCNT cathode 10; (d) Ragone plots of the LIC and other devices 10; (e) Schematic illustration of the LIC 31; (f) Charge-discharge profiles of Nb2O5-600 at different rates 31; (g, h) Ragone plot of Nb2O5-based flexible LIC 31."
Fig 4
(a) SEM of the Na2Ti2O5 nanosheet array 35; (b). Discharge-charge curves of the Na2Ti2O5 anode at 0.12C rate with ether electrolyte (inset: with ester electrolyte) 35; (c) Rate performance of Na2Ti2O5 anode 35; (d) Schematic illustration of synergistic Na+ ion storage behavior of the Na2Ti2O5 anode 35; (e) Ragone plot of Na2Ti2O5-based SIC 35."
Fig 5
(a) SEM image of Ni0.25Mn0.75O@C 40; (b) The CV activation process of Ni0.25Mn0.75O electrode40; (c) XRD patterns of Ni0.25Mn0.75O electrode before and after activation 40; (d) Structural merits of Fe3O4@ALD TiO2 hybrid nanorod array 41; (e) TEM image of the hybrid nanorods 41; (f) Ragone plots of the HSCs 41."
Fig 6
(a) SEM image of CoO@PPy nanowire array cathode 50; (b) The CoO@PPy//AC hybrid capacitor powering rotation motor and lighting LED indicators 50; (c) Ragone plot of CoO@PPy//AC HSC 50; (d) Structural merits of Fe3O4-C electrode 51; (e) Comparative CV curves of Fe3O4-C anode and CNTs cathode in three-electrode cells 51; (f) Energy storage mechanism of Fe3O4-C electrode in KOH electrolyte 51; (g) Structural merits of Fe3O4@CG 52; (h) SEM image of Fe3O4@CG 52."
1 |
Zhou T. H. ; Lv W. ; Li J. ; Zhou G. M. ; Zhao Y. ; Fan S. X. ; Liu B. L. ; Li B. H. ; Kang F. Y. ; Yang Q. H. Energy Environ. Sci. 2017, 10, 1694.
doi: 10.1039/c7ee01430a |
2 |
Li H. F. ; Han C. P. ; Huang Y. ; Huang Y. ; Zhu M. S. ; Pei Z. X. ; Xue Q. ; Wang Z. F. ; Liu Z. X. ; Tang Z. J. ; et al Energy Environ. Sci. 2018, 11, 941.
doi: 10.1039/c7ee03232c |
3 |
Lu Q. ; He Y. B. ; Yu Q. ; Li B. ; Kaneti Y. V. ; Yao Y. ; Kang F. ; Yang Q. H. Adv. Mater. 2017, 29, 1604460.
doi: 10.1002/adma.201604460 |
4 |
Jia Z. Y. ; Liu M. N. ; Zhao X. L. ; Wang X. S. ; Pan Z. H. ; Zhang Y. G. Acta Phys. -Chim. Sin. 2017, 33, 2510.
doi: 10.3866/PKU.WHXB201705311 |
贾朝阳; 刘美男; 赵新洛; 王贤树; 潘争辉; 张跃钢. 物理化学学报, 2017, 33, 2510.
doi: 10.3866/PKU.WHXB201705311 |
|
5 |
Yoshino A. Angew. Chem. Int. Ed. 2012, 51, 5798.
doi: 10.1002/anie.201105006 |
6 |
Li B. ; Zheng J. S. ; Zhang H. Y. ; Jin L. M. ; Yang D. J. ; Lv H. ; Shen C. ; Shellikeri A. ; Zheng Y. R. ; Gong R. Q. ; et al Adv. Mater. 2018, 30, 1705670.
doi: 10.1002/adma.201705670 |
7 |
Dong L. B. ; Xu C. J. ; Li Y. ; Huang Z. H. ; Kang F. Y. ; Yang Q. H. ; Zhao X. J. Mater. Chem. A 2016, 4, 4659.
doi: 10.1039/C5TA10582J |
8 |
Hu H. ; Guan B. Y. ; Lou X. W. Chemistry 2016, 1, 102.
doi: 10.1016/j.chempr.2016.06.001 |
9 |
Zuo W. H. ; Li R.Z ; Zhou C. ; Li Y. Y. ; Xia J. L. ; Liu J. P. Adv. Sci. 2017, 4, 1600539.
doi: 10.1002/advs.201600539 |
10 |
Zuo W. H. ; Wang C. ; Li Y. Y. ; Liu J. P. Sci. Rep. 2015, 5, 7780.
doi: 10.1038/srep07780 |
11 |
Han C. P. ; Li H. F. ; Shi R. Y. ; Xu L. ; Li J.Q. ; Kang F. Y. ; Li B. H. Energy Environ. Mater. 2018, 1, 75.
doi: 10.1002/eem2.12009 |
12 |
Wang H. W. ; Zhu C. R. ; Chao D. L. ; Yan Q. Y. ; Fan H. J. Adv. Mater. 2017, 29, 1702093.
doi: 10.1002/adma.201702093 |
13 |
Kim H. ; Cho M. Y. ; Kim M. H. ; Park K. Y. ; Gwon H. ; Lee Y. ; Roh K. C. ; Kang K. Adv. Energy Mater. 2013, 3, 1500.
doi: 10.1002/aenm.201300467 |
14 |
Jin T. ; Han Q. Q. ; Jiao L. F. Adv. Mater. 2019, 1806304.
doi: 10.1002/adma.201806304 |
15 |
Qin J. ; Zhang Q. ; Cao Z. ; Li X. ; Hu C. W. ; Wei B. Q. Nano Energy 2013, 2, 733.
doi: 10.1016/j.nanoen.2012.12.009 |
16 |
Pasquier A. D. ; Plitz I. ; Gural J. ; Badway F. ; Amatucci G. G. J. Power Sources 2004, 136, 160.
doi: 10.1016/j.jpowsour.2004.05.023 |
17 |
Zhai Y. P. ; Dou Y. Q. ; Zhao D. Y. ; Fulvio P. F. ; Mayes R. T. ; Dai S. Adv. Mater. 2011, 23, 4828.
doi: 10.1002/adma.201100984 |
18 |
Frackowiak E. ; Jurewicz K. ; Delpeux S. ; Beguin F. J. Power Sources 2001, 97- 98, 82.
doi: 10.1016/S0378-7753(01)00736-4 |
19 |
Wang G. P. ; Zhang L. ; Zhang J. J. Chem. Soc. Rev. 2012, 41, 797.
doi: 10.1039/c1cs15060j |
20 |
Augustyn V. ; Simon P. ; Dunn B. Energy Environ. Sci. 2014, 7, 1597.
doi: 10.1039/c3ee44164d |
21 |
Jiang Y. Q. ; Liu J. P. Energy Environ. Mater. 2019, 2, 30.
doi: 10.1002/eem2.12028 |
22 |
Jiang J. ; Li Y. Y. ; Liu J. P. ; Huang X. T. ; Yuan C. Z. ; Lou X. W. Adv. Mater. 2012, 24, 5166.
doi: 10.1002/adma.201202146 |
23 |
Jiang J. ; Li Y. Y. ; Liu J. P. ; Huang X. T. Nanoscale 2011, 3, 45.
doi: 10.1039/c0nr00472c |
24 |
Amatucci G. G. ; Badway F. ; Du Pasquier A. ; Zheng T. J. Electrochem. Soc. 2001, 148, A930.
doi: 10.1149/1.1383553 |
25 |
Plitz I. ; DuPasquier A. ; Badway F. ; Gural J. ; Pereira N. ; Gmitter A. ; Amatucci G. G. Appl. Phys. A: Mater. Sci. Process. 2006, 82, 615.
doi: 10.1007/s00339-005-3420-0 |
26 |
Sun Y. ; Zhao L. ; Pan H. ; Lu X. ; Gu L. ; Hu Y. S. ; Li H. ; Armand M. ; Ikuhara Y. ; Chen L. Q. Nat. Commun. 2013, 4, 1870.
doi: 10.1038/ncomms2878 |
27 |
Yu L. ; Wu H. B. ; Lou X. W. Adv. Mater. 2013, 25, 2296.
doi: 10.1002/adma.201204912 |
28 |
Zhao L. ; Hu Y. S. ; Li H. ; Wang Z. ; Chen L. J. Adv. Mater. 2011, 23, 1385.
doi: 10.1002/adma.201003294 |
29 |
Zhang H. ; Wang Y. ; Liu P. ; Chou S. L. ; Wang J. Z. ; Liu H. ; Wang G. ; Zhao H. ACS Nano 2016, 10, 507.
doi: 10.1021/acsnano.5b05441 |
30 |
Kodama R. ; Terada Y. ; Nakai I. ; Komaba S. ; Kumagai N. J. Electrochem. Soc. 2006, 153, A583.
doi: 10.1149/1.2163788 |
31 |
Deng B. H ; Lei T. Y. ; Zhu W. H. ; Xiao L. ; Liu J. P. Adv. Funct. Mater. 2018, 28, 1704330.
doi: 10.1002/adfm.201704330 |
32 |
Li Z. ; Shen W. ; Wang C. ; Xu Q. ; Liu H. ; Wang Y. ; Xia Y. J. J. Mater. Chem. A 2016, 4, 17111.
doi: 10.1039/C6TA08416H |
33 |
Ni J. F. ; Fu S. D. ; Wu C. ; Zhao Y. ; Maier J. ; Yu Y. ; Li L. Adv. Energy Mater. 2016, 6, 1502568.
doi: 10.1002/aenm.201502568 |
34 |
Shirpour M. ; Cabana J. ; Doeff M. Energy Environ. Sci. 2013, 6, 2538.
doi: 10.1039/c3ee41037d |
35 |
Gui Q. Y. ; Ba D. L. ; Zhao Z. S. ; Mao Y. F. ; Zhu W. H. ; Lei T. Y. ; Tan J. F. ; Deng B. H. ; Xiao L. ; Li Y. Y. Small Methods 2019, 3, 1800371.
doi: 10.1002/smtd.201800371 |
36 |
Miller J. R. ; Simon P. Science 2008, 321, 651.
doi: 10.1126/science.1158736 |
37 |
Huang Y. ; Zhu M. S. ; Huang Y. ; Pei Z. X. ; Li H. F. ; Wang Z. F. ; Xue Q. ; Zhi C. Y. Adv. Mater. 2016, 28, 8344.
doi: 10.1002/adma.201601928 |
38 |
Suo L. ; Borodin O. ; Gao T. ; Olguin M. ; Ho J. ; Fan X. ; Luo C. ; Wang C. ; Xu K. Science 2015, 350, 938.
doi: 10.1126/science.aab1595 |
39 |
Yamada Y. ; Usui K. ; Sodeyama K. ; Ko S. ; Tateyama Y. ; Yamada A. Nat. Energy 2016, 1, 16129.
doi: 10.1038/nenergy.2016.129 |
40 |
Zuo W. H. ; Xie C. Y. ; Xu P. ; Li Y. Y. ; Liu J. P. Adv. Mater. 2017, 29, 1703463.
doi: 10.1002/adma.201703463 |
41 |
Li R. Z. ; Ba X. ; Zhang H. F. ; Xu P. ; Li Y. Y. ; Cheng C. W. ; Liu J. P. Adv. Funct. Mater. 2018, 28, 1800497.
doi: 10.1002/adfm.201800497 |
42 |
Li R. Z. ; Lin Z. ; Ba X. ; Li Y. Y. ; Ding R. ; Liu J. P. Nanoscale Horiz. 2016, 1, 150.
doi: 10.1039/C5NH00100E |
43 |
Kolathodi M. S. ; Palei M. ; Natarajan T. S. J. Mater. Chem. A 2015, 3, 7513.
doi: 10.1039/C4TA07075E |
44 |
Yan J. ; Fan Z. ; Sun W. ; Ning G. ; Wei T. ; Zhang Q. ; Zhang R. ; Zhi L. ; Wei F. Adv. Funct. Mater. 2012, 22, 2632.
doi: 10.1002/adfm.201102839 |
45 |
Li Y. Y. ; Tang F. ; Wang R. J. ; Wang C. ; Liu J. P. ACS Appl. Mater. Interfaces 2016, 8, 30232.
doi: 10.1021/acsami.6b10249 |
46 |
Dai C. S. ; Chien P. Y. ; Lin J. Y. ; Chou S. W. ; Wu W. K. ; Li P. H. ; Wu K. Y. ; Lin T. W. ACS Appl. Mater. Interfaces 2013, 5, 12168.
doi: 10.1021/am404196s |
47 |
Jiang Y. Q. ; Zhou C. ; Liu J. P. Energy Storage Mater. 2018, 11, 75.
doi: 10.1016/j.ensm.2017.09.013 |
48 |
Wang X. W. ; Li M. X. ; Chang Z. ; Wang Y. F. ; Chen B. W. ; Zhang L. X. ; Wu Y. P. J. Electrochem. Soc. 2015, 162, A1966.
doi: 10.1149/2.0041511jes |
49 |
Qu Q. T. ; Yang S. B. ; Feng X. L. Adv. Mater. 2011, 23, 5574.
doi: 10.1002/adma.201103042 |
50 |
Zhou C. ; Zhang Y. W. ; Li Y. Y. ; Liu J. P. Nano Lett. 2013, 13, 2078.
doi: 10.1021/nl400378j |
51 |
Li R. Z. ; Wang Y. M. ; Zhou C. ; Wang C. ; Ba X. ; Li Y. Y. ; Huang X. T. ; Liu J. P. Adv. Funct. Mater. 2015, 25, 5384.
doi: 10.1002/adfm.201502265 |
52 |
Jiang Y. Q. ; Zhao D. F. ; Ba D. L. ; Li Y. Y. ; Liu J. P. Adv. Mater. Inter. 2018, 5, 1801043.
doi: 10.1002/admi.201801043 |
53 |
Zuo W. H. ; Zhu W. H. ; Zhao D. F. ; Sun Y. F. ; Li Y. Y. ; Liu J. P. ; Lou X. W. Energy Environ. Sci. 2016, 9, 2881.
doi: 10.1039/c6ee01871h |
54 |
Zhao Z. S. ; Ye Y. H. ; Zhu W. H. ; Xiao L. ; Deng B. H. ; Liu J. P. Chinese Chem. Lett. 2018, 29, 629.
doi: 10.1016/j.cclet.2018.01.011 |
55 |
Zhu W. H. ; Li R. Z. ; Xu P. ; Li Y. Y. ; Liu J. P. J. Mater. Chem. A 2017, 5, 22216.
doi: 10.1039/c7ta07036e |
56 |
Gui Q. Y. ; Wu L. X. ; Li Y. Y. ; Liu J. P. Adv. Sci. 2019, 1802067.
doi: 10.1002/advs.201802067 |
57 |
Xia Y. ; Mathis T. S. ; Zhao M. Q. ; Anasori B. ; Dang A. ; Zhou Z. H. ; Cho H. ; Gogotsi Y. ; Yang S. Nature 2018, 557, 409.
doi: 10.1038/s41586-018-0109-z |
58 |
Wang C. ; Zhan Y. ; Wu L. X. ; Li Y. Y. ; Liu J. P. Nanotechnology 2014, 25, 305401.
doi: 10.1088/0957-4484/25/30/305401 |
59 |
Ba D. L. ; Li Y. Y. ; Sun Y. F ; Guo Z. P ; Liu J. P. Sci. China Mater. 2019, 62, 487.
doi: 10.1007/s40843-018-9326-y |
60 |
Liu J. P ; Guan C. ; Zhou C. ; Fan Z. ; Ke Q. Q. ; Zhang G. Z. ; Liu C. ; Wang J. Adv. Mater. 2016, 28, 8732.
doi: 10.1002/adma.201603038 |
61 |
Li B. ; Zheng J. ; Zhang H. ; Jin L. ; Yang D. ; Lv H. ; Shen C. ; Shellikeri A. ; Zheng Y. ; Gong R. ; et al Adv. Mater. 2018, 30, e1705670.
doi: 10.1002/adma.201705670 |
62 |
Zhao C. M. ; Wang X. ; Wang S. M. ; Wang Y. Y. ; Zhao Y. X. ; Zheng W. T. Int. J. Hydrogen Energy 2012, 37, 11846.
doi: 10.1016/j.ijhydene.2012.05.138 |
[1] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[2] | Guangtao Cong, Yi-Chun Lu. Strategies to Improve the Energy Density of Non-Aqueous Organic Redox Flow Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106008-. |
[3] | Dongdong Liu, Chao Chen, Xunhui Xiong. Research Progress on Artificial Protective Films for Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008078-. |
[4] | Yao Chen, Haoyang Dong, Yuanyuan Li, Jinping Liu. Recent Advances in 3D Array Anode Materials for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2007075-. |
[5] | Pan Zhao,Bingjun Yang,Jiangtao Chen,Junwei Lang,Tianyun Zhang,Xingbin Yan. A Safe, High-Performance, and Long-Cycle Life Zinc-Ion Hybrid Capacitor Based on Three-Dimensional Porous Activated Carbon [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904050-. |
[6] | Ágnes NAGY. Phase Space View of Ensembles of Excited States [J]. Acta Phys. -Chim. Sin., 2018, 34(5): 492-496. |
[7] | Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials [J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516. |
[8] | Dong ZHENG,Bei-Jing ZHONG,Tong YAO. Methodology for Formulating Aviation Kerosene Surrogate Fuels and The Surrogate Fuel Model for HEF Kerosene [J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2438-2445. |
[9] | LU Tian, CHEN Fei-Wu. Meaning and Functional Form of the Electron Localization Function [J]. Acta Phys. -Chim. Sin., 2011, 27(12): 2786-2792. |
[10] | ZHANG Jing, KONG Ling-Bin, CAI Jian-Jun, YANG Zhen-Sheng, LUO Yong-Chun, KANG Long. Novel Polypyrrole/Mesoporous Carbon Nanocomposite Electrode for an Electrochemical Hybrid Capacitor [J]. Acta Phys. -Chim. Sin., 2010, 26(06): 1515-1520. |
[11] | LIANG Xiao-Qin; PU Xue-Mei; TIAN An-Min. Structures and Properties of s-Triazine Derivations Substituted by Substitutent Groups Containing Nitrogen [J]. Acta Phys. -Chim. Sin., 2008, 24(04): 639-645. |
|