Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (9): 2204017.doi: 10.3866/PKU.WHXB202204017
Special Issue: Carbonene Fiber and Smart Textile
• REVIEW • Previous Articles Next Articles
Hanqing Liu1,3, Feng Zhou1, Xiaoyu Shi1, Quan Shi2,*(), Zhong-Shuai Wu1,*()
Received:
2022-04-07
Accepted:
2022-04-29
Published:
2022-05-17
Contact:
Quan Shi,Zhong-Shuai Wu
E-mail:shiquan@dicp.ac.cn;wuzs@dicp.ac.cn
About author:
Email: wuzs@dicp.ac.cn (Z.W.)Supported by:
Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices[J]. Acta Phys. -Chim. Sin. 2022, 38(9), 2204017. doi: 10.3866/PKU.WHXB202204017
Fig 1
The development history of graphene fibers 31, 37-39. Adapted with permission from Ref. 37, Copyright 2012, John Wiley and Sons. Adapted with permission from Ref. 38, Copyright 2011, American Chemical Society. Adapted with permission from Ref.31, Copyright 2011, Springer Nature. Adapted with permission from Ref. 39, Copyright 2017, Royal Society of Chemistry."
Fig 2
The preparation method of graphene fibers: (a) Space-confined hydrothermal method, (b) CVD deposition method, (c) dry spray method, and (d) wet spinning method. (a) Shaping and weaving of graphene fibers by space-confined hydrothermal treatment. Adapted with permission from Ref. 38, Copyright 2012, John Wiley and Sons. (b) Film to fiber self-assembly. Preparation process of graphene fiber. Adapted with permission from Ref. 37, Copyright 2011, American Chemical Society. (c) Schematic illustration of the dry spinning process with a concentrated organic dispersion of graphene oxide (GO). Adapted with permission from Ref. 39, Copyright 2017, Royal Society of Chemistry. (d) The schematic showing the evolution of graphene fibers by wet-spinning. Adapted with permission from Ref. 36, Copyright 2020, John Wiley and Sons."
Fig 3
Various strategies to enhance the performance of graphene fibers (GFs). (a) In situ Small Angle X-ray Scattering patterns of GO fluid. Adapted with permission from Ref. 74, Copyright 2019, Springer Nature. (b) Schematic images of the molecular doping mechanism of giant graphene-Ag fibers. Adapted with permission from Ref. 82, Copyright 2013, John Wiley and Sons. (c) Schematic of the "intercalated" structure of the GO fibers and graphene fibers. Adapted with permission from Ref. 70, Copyright 2015, American Association for the Advancement of Science."
Table 1
Comparison table of strength, electrical conductivity and thermal conductivity of graphene fibers prepared by different methods."
Fabrication Method | Reduction method | Tensile strength (MPa) | Electrical conductivity (S?m?1) | Thermal conductivity (W?m?1?K?1) | Ref. |
Hydrothermal | 800 ℃ in vacuum | 420 | 1.0 × 103 | – | |
Ag doping | 90 ℃ in HI or Vitamin C | 360 | 9.1 × 104 | – | |
Hydrothermal | 1200 ℃ in Ar | 724 | 6.6 × 104 | – | |
Ca doping | 3000 ℃ in Ar | – | Superconductive at 11 K | – | |
Wet spinning | 1000 ℃ in Ar | 214 | 2.94 × 104 | – | |
K doping | 3000 ℃ in Ar | – | 2.24 × 107 | – | |
Wet spinning | 80 ℃ in HI | 140 | 2.5 × 104 | – | |
Wet spinning | 90 ℃ in HI | 740.1 | 3.84 × 104 | – | |
Wet spinning | 80 ℃ in HI | 182 | 3.5 × 103 | – | |
Wet spinning | 1800 ℃ in Ar | 1150 | 2.21 × 105 | 1290 |
Fig 5
Graphene fiber-based supercapacitors. (a) Schematic of GFs via plasma treatment (left). Specific capacitance of as-prepared GFs and PGFs (right). Adapted with permission from Ref. 130, Copyright 2018, American Chemical Society. (b) Schematic illustration of the GF@3D-Gs (left). Cross-section view of a GF@3D-G (right). Adapted with permission from Ref. 131, Copyright 2013, John Wiley and Sons. (c) Schematic of the fiber activation process. Adapted with permission from Ref. 134, Copyright 2019, American Chemical Society. (d) Schematic illustration of the dot-sheet porous structure formed between CDs and graphene. Adapted with permission from Ref. 132, Copyright 2018, Royal Society of Chemistry. (e) The wet spinning process of graphene fibers (f) SEM images of the inner wall of the needle and GF electrode. Adapted with permission from Ref. 135, Copyright 2015, Royal Society of Chemistry."
Fig 6
Graphene fiber-based pseudocapacitors. (a) Schematic of wet-spinning process for MXene/GO fiber. Adapted with permission from Ref. 150, Copyright 2017, Royal Society of Chemistry. (b) The preparation process of SWCNT/GO fiber. Adapted with permission from Ref. 120, Copyright 2014, Springer Nature. (c) Schematic illustration of the preparation of N-doped GFs. Adapted with permission from Ref. 141, Copyright 2017, John Wiley and Sons."
Table 2
Electrochemical performance of GF-based supercapacitors."
Electrode | Electrolyte | Voltage/V | Capacitance | Energy density | Power density | Ref. |
rGO/CNT@CMC | H2SO4/PVA | 0.8 | 177 mF?cm?2, 158 F?cm?3 | 3.5 mWh?cm?3 | 2 × 10?5 W?cm?2, 0.018 W?cm?3, | |
graphene/CNT | H2SO4/PVA | 0.8 | 38.8 F?cm?3 | 3.4 mWh?cm?3 | 0.7 W?cm?3 | |
Hollow graphene/ PSS: PEDOT fiber | PVA/H3PO4 | 0.8 | 304.5 mF?cm?2 | 27.1 μWh?cm?2 | 66.5 μW?cm?2 | |
rGO@MXene | H2SO4/PVA | 0.8 | 253 mF?cm?2 | 27.1 μWh?cm?2 | 2.5 × 10?3 W?cm?2 | |
CNT/graphene/PANI composite fiber | PVA/H3PO4 | 0.8 | 273.7 mF?cm?2 | N/A | N/A | |
RuO2-decorated holey graphene | PVA/H3PO4 | 1.0 | 199 F?cm?3 | 27.3 mWh?cm?3 | 2954.1 mW?cm?3 | |
MXene@rGO/MXene@PEDOT: PSS | H2SO4/PVA | 1.5 | 53.1 F?cm?3 | 16.6 mWh?cm?3 | 0.037 W?cm?3 | |
MoS2/Graphene | H2SO4/PVA | 0.8 | 189.7 mF?cm?2 | 6.5 mWh?cm?3 | 6.5 × 10?4 W?cm?3 | |
MWCNTs-RGO | Zn(CF3SO3)2/PVA | 1.8 | 134.1 F?cm?3 | 13.1 mWh?cm?3 | 1.43 W?cm?3 |
Fig 7
Graphene fiber-based lithium-ion battery. (a) The fabrication process of titania/rGO fiber batteries. Adapted with permission from Ref. 164, Copyright 2017, American Chemical Society. (b) A 4 m long GO/CNT/S fiber (left). Schematic of cable lithium sulfur batteries (middle). Charge/discharge profiles determined at 0.1C (right). Adapted with permission from Ref. 165, Copyright 2017, John Wiley and Sons. (c) Schematic of fiber-shaped lithium-ion battery (LIB) with self-healable ability (left). Cyclic performance of self-healing LIB with different healing times at 0.1 A∙g?1 (right). Adapted with permission from Ref. 166, Copyright 2018, Elsevier."
Fig 8
Graphene fibers used in neural microelectrodes. (a) Fabrication Process of GF-Pt microelectrode. (b) Image of an inserted microelectrode. (c) CV of each individually addressable microelectrode assembled in one array. All microelectrodes showed very similar electrochemical responses. Adapted with permission from Ref. 105, Copyright 2019, John Wiley and Sons."
Fig 9
Graphene fibers for thermoelectric devices. (a) SEM images with different magnifications and view angles of graphene fibers. (b) Comparison of the S of graphene fiber. Adapted with permission from Ref. 107, Copyright 2016, Springer. (c) Scheme for measurement of the fiber device. Adapted with permission from Ref. 106, Copyright 2020, American Chemical Society. (d) Digital photographs of thermoelectric generators. (e) The stability with time for output performance of thermoelectric generators. Adapted with permission from Ref. 174, Copyright 2019, Elsevier."
Fig 10
Graphene based fibers for solar cells and phase change materials. (a) Schematic of the principle for graphene fiber-based solar cell. (b) Current density versus voltage curves of graphene fiber-shaped solar cell. Adapted with permission from Ref. 56, Copyright 2015, John Wiley and Sons. (c) Schematic of dye-sensitized solar cell prepared by using a Pt/graphene composite fiber. Adapted with permission from Ref.180, Copyright 2013, John Wiley and Sons. (d) Schematic of hollow graphene/CNTs/PANI fiber and TiO2/Ti wire. Adapted with permission from Ref. 181, Copyright 2020, Springer. (e) Schematic of integrated device containing solar cell and supercapacitor. Adapted with permission from Ref. 109, Copyright 2020, Elsevier. (f) The aerogel-directed smart fiber as spun. (g) Photograph (left) and IR image under light irradiation (right) of PEG-graphene fiber sewn on a white fabric. Adapted with permission from Ref. 110, Copyright 2018, John Wiley and Sons."
1 |
Jayathilaka W. A. D. M. ; Qi K. ; Qin Y. ; Chinnappan A. ; Serrano-Garcia W. ; Baskar C. ; Wang H. ; He J. ; Cui S. ; Thomas S. W. ; et al Adv. Mater. 2019, 31, 1805921.
doi: 10.1002/adma.201805921 |
2 |
Ates H. C. ; Yetisen A. K. ; Guder F. ; Dincer C. Nat. Electron. 2021, 4, 13.
doi: 10.1038/s41928-020-00533-1 |
3 |
Araki T. ; Uemura T. ; Yoshimoto S. ; Takemoto A. ; Noda Y. ; Izumi S. ; Sekitani T. Adv. Mater. 2020, 32, 1902684.
doi: 10.1002/adma.201902684 |
4 |
Lim H.-R. ; Kim H. S. ; Qazi R. ; Kwon Y.-T. ; Jeong J.-W. ; Yeo W.-H. Adv. Mater. 2020, 32, 1901924.
doi: 10.1002/adma.201901924 |
5 | Xia K.-L. ; Jian M.-Q. ; Zhang Y.-Y. Acta Phys. -Chim. Sin. 2016, 32, 2427. |
夏凯伦; 蹇木强; 张莹莹. 物理化学学报, 2016, 32, 2427.
doi: 10.3866/PKU.WHXB201607261 |
|
6 | Wang H. ; He M. ; Zhang Y. Acta Phys. -Chim. Sin. 2019, 35, 1207. |
王灏珉; 何茂帅; 张莹莹. 物理化学学报, 2019, 35, 1207.
doi: 10.3866/PKU.WHXB201811011 |
|
7 | Zhang S. ; Zhang N. ; Zhang J. Acta Phys. -Chim. Sin. 2020, 36, 1907021. |
张树辰; 张娜; 张锦. 物理化学学报, 2020, 36, 1907021.
doi: 10.3866/PKU.WHXB201907021 |
|
8 |
Cheng Y. ; Wang R. ; Sun J. ; Gao L. Adv. Mater. 2015, 27, 7365.
doi: 10.1002/adma.201503558 |
9 |
Kwon S. ; Hwang Y. H. ; Nam M. ; Chae H. ; Lee H. S. ; Jeon Y. ; Lee S. ; Kim C. Y. ; Choi S. ; Jeong E. G. ; et al Adv. Mater. 2020, 32, 1903488.
doi: 10.1002/adma.201903488 |
10 |
Yang Z. ; Zhai Z. ; Song Z. ; Wu Y. ; Liang J. ; Shan Y. ; Zheng J. ; Liang H. ; Jiang H. Adv. Mater. 2020, 32, 1907495.
doi: 10.1002/adma.201907495 |
11 |
Xin S. ; Guo Y.-G. ; Wan L.-J. Acc. Chem. Res. 2012, 45, 1759.
doi: 10.1021/ar300094m |
12 |
Zhou G. ; Xu L. ; Hu G. ; Mai L. ; Cui Y. Chem. Rev. 2019, 119, 11042.
doi: 10.1021/acs.chemrev.9b00326 |
13 |
Wang B. ; Fang X. ; Sun H. ; He S. ; Ren J. ; Zhang Y. ; Peng H. Adv. Mater. 2015, 27, 7854.
doi: 10.1002/adma.201503441 |
14 |
Wang X. ; Shen G. Nano Energy 2015, 15, 104.
doi: 10.1016/j.nanoen.2015.04.011 |
15 |
Xu P. ; Wei B. ; Cao Z. ; Zheng J. ; Gong K. ; Li F. ; Yu J. ; Li Q. ; Lu W. ; Byun J.-H. ; et al ACS Nano 2015, 9, 6088.
doi: 10.1021/acsnano.5b01244 |
16 |
Weintraub B. ; Wei Y. ; Wang Z. L. Angew. Chem. Int. Ed. 2009, 48, 8981.
doi: 10.1002/anie.200904492 |
17 |
Chen T. ; Wang S. ; Yang Z. ; Feng Q. ; Sun X. ; Li L. ; Wang Z.-S. ; Peng H. Angew. Chem. Int. Ed. 2011, 50, 1815.
doi: 10.1002/anie.201003870 |
18 |
Li R. ; Xiang X. ; Tong X. ; Zou J. ; Li Q. Adv. Mater. 2015, 27, 3831.
doi: 10.1002/adma.201501333 |
19 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896 |
20 |
Tan C. ; Cao X. ; Wu X.-J. ; He Q. ; Yang J. ; Zhang X. ; Chen J. ; Zhao W. ; Han S. ; Nam G.-H. ; et al Chem. Rev. 2017, 117, 6225.
doi: 10.1021/acs.chemrev.6b00558 |
21 |
Xu M. ; Liang T. ; Shi M. ; Chen H. Chem. Rev. 2013, 113, 3766.
doi: 10.1021/cr300263a |
22 | Wang K. ; Shi L. ; Wang M. ; Yang H. ; Liu Z. ; Peng H. Acta Phys. -Chim. Sin. 2019, 35, 1112. |
王可心; 史刘嵘; 王铭展; 杨皓; 刘忠范; 彭海琳. 物理化学学报, 2019, 35, 1112.
doi: 10.3866/PKU.WHXB201805032 |
|
23 | Cheng Y. ; Wang K. ; Qi Y. ; Liu Z. Acta Phys. -Chim. Sin. 2022, 38, 2006046. |
程熠; 王坤; 亓月; 刘忠范. 物理化学学报, 2022, 38, 2006046.
doi: 10.3866/PKU.WHXB202006046 |
|
24 | Liu Q.-B. ; Yu C. ; He Z.-Z. ; Wang J.-J. ; Li J. ; Lu W.-L. ; Feng Z.-H. Acta Phys. -Chim. Sin. 2016, 32, 787. |
刘庆彬; 蔚翠; 何泽召; 王晶晶; 李佳; 芦伟立; 冯志红. 物理化学学报, 2016, 32, 787.
doi: 10.3866/PKU.WHXB201512183 |
|
25 |
Qu L. ; Liu Y. ; Baek J. ; Dai L. ACS Nano 2010, 4, 1321.
doi: 10.1021/nn901850u |
26 |
Wang X. ; Li Y. ; Das P. ; Zheng S. ; Zhou F. ; Wu Z.-S. Energy Storage Mater. 2020, 31, 156.
doi: 10.1016/j.ensm.2020.06.010 |
27 |
Wu Z.-S. ; Parvez K. ; Winter A. ; Vieker H. ; Liu X. ; Han S. ; Turchanin A. ; Feng X. ; Muellen K. Adv. Mater. 2014, 26, 4552.
doi: 10.1002/adma.201401228 |
28 |
Zhang B. ; Jiang Y. Micro Nano Lett. 2019, 14, 224.
doi: 10.1049/mnl.2018.5105 |
29 |
Liu H. ; Sun K. ; Shi X. ; Yang H. ; Dong H. ; Kou Y. ; Das P. ; Wu Z.-S. ; Shi Q. Energy Storage Mater. 2021, 42, 845.
doi: 10.1016/j.ensm.2021.08.022 |
30 |
Chen Y. ; Yue Y.-Y. ; Wang S.-R. ; Zhang N. ; Feng J. ; Sun H.-B. Adv. Electron. Mater. 2019, 5, 2779.
doi: 10.1002/aelm.201900247 |
31 |
Xu Z. ; Gao C. Nat. Commun. 2011, 2, 571.
doi: 10.1038/ncomms1583 |
32 |
Meng F. ; Lu W. ; Li Q. ; Byun J.-H. ; Oh Y. ; Chou T.-W. Adv. Mater. 2015, 27, 5113.
doi: 10.1002/adma.201501126 |
33 |
Guan F.-L. ; An F. ; Yang J. ; Li X. ; Li X.-H. ; Yu Z.-Z. Chin. J. Polym. Sci. 2017, 35, 1381.
doi: 10.1007/s10118-017-1972-z |
34 |
Weng W. ; Yang J. ; Zhang Y. ; Li Y. ; Yang S. ; Zhu L. ; Zhu M. Adv. Mater. 2019, 32, 1902301.
doi: 10.1002/adma.201902301 |
35 |
Xu Z. ; Gao C. Mater. Today 2015, 18, 480.
doi: 10.1016/j.mattod.2015.06.009 |
36 |
Fang B. ; Chang D. ; Xu Z. ; Gao C. Adv. Mater. 2020, 32, 29.
doi: 10.1002/adma.201902664 |
37 |
Li X. ; Zhao T. ; Wang K. ; Yang Y. ; Wei J. ; Kang F. ; Wu D. ; Zhu H. Langmuir 2011, 27, 12164.
doi: 10.1021/la202380g |
38 |
Dong Z. ; Jiang C. ; Cheng H. ; Zhao Y. ; Shi G. ; Jiang L. ; Qu L. Adv. Mater. 2012, 24, 1856.
doi: 10.1002/adma.201200170 |
39 |
Tian Q. ; Xu Z. ; Liu Y. ; Fang B. ; Peng L. ; Xi J. ; Lia Z. ; Gao C. Nanoscale 2017, 9, 12335.
doi: 10.1039/c7nr03895j |
40 |
Ansari M. O. ; Khan M. M. ; Ansari S. A. ; Amal I. ; Lee J. ; Cho M. H. Chem. Eng. J. 2014, 242, 155.
doi: 10.1016/j.cej.2013.12.033 |
41 |
Chen S. ; Qiu L. ; Cheng H.-M. Chem. Rev. 2020, 120, 2811.
doi: 10.1021/acs.chemrev.9b00466 |
42 |
Xu Z. ; Gao C. Acc. Chem. Res. 2014, 47, 1267.
doi: 10.1021/ar4002813 |
43 |
Sasikala S. P. ; Lim J. ; Kim I. H. ; Jung H. J. ; Yun T. ; Han T. H. ; Kim S. O. Chem. Soc. Rev. 2018, 47, 6013.
doi: 10.1039/c8cs00299a |
44 |
Behabtu N. ; Lomeda J. R. ; Green M. J. ; Higginbotham A. L. ; Sinitskii A. ; Kosynkin D. V. ; Tsentalovich D. ; Parra-Vasquez A. N. G. ; Schmidt J. ; Kesselman E. ; et al Nat. Nanotechnol. 2010, 5, 406.
doi: 10.1038/nnano.2010.86 |
45 |
Chen D. ; Feng H. ; Li J. Chem. Rev. 2012, 112, 6027.
doi: 10.1021/cr300115g |
46 |
Pham V. P. ; Jang H.-S. ; Whang D. ; Choi J.-Y. Chem. Soc. Rev. 2017, 46, 6276.
doi: 10.1039/c7cs00224f |
47 |
Huang X. ; Qi X. ; Boey F. ; Zhang H. Chem. Soc. Rev. 2012, 41, 666.
doi: 10.1039/c1cs15078b |
48 |
Georgakilas V. ; Tiwari J. N. ; Kemp K. C. ; Perman J. A. ; Bourlinos A. B. ; Kim K. S. ; Zboril R. Chem. Rev. 2016, 116, 5464.
doi: 10.1021/acs.chemrev.5b00620 |
49 |
Liu Y. ; Xu Z. ; Gao W. ; Cheng Z. ; Gao C. Adv. Mater. 2017, 29, 1606794.
doi: 10.1002/adma.201606794 |
50 |
Wu S. ; Qureshi T. ; Wang G. Energies 2021, 14, 4614.
doi: 10.3390/en14154614 |
51 |
Cheng H. ; Li Q. ; Zhu L. ; Chen S. Small Methods 2021, 5, 2100502.
doi: 10.1002/smtd.202100502 |
52 | Jian M. ; Zhang Y. ; Liu Z. Acta Phys. -Chim. Sin. 2022, 38, 2007093. |
蹇木强; 张莹莹; 刘忠范. 物理化学学报, 2022, 38, 2007093.
doi: 10.3866/PKU.WHXB202007093 |
|
53 |
Ni G.-X. ; Yang H.-Z. ; Ji W. ; Baeck S.-J. ; Toh C.-T. ; Ahn J.-H. ; Pereira V. M. ; Oezyilmaz B. .Adv. Mater. 2014, 26, 1081.
doi: 10.1002/adma.201304156 |
54 |
Deng B. ; Liu Z. ; Peng H. Adv. Mater. 2019, 31, 1800996.
doi: 10.1002/adma.201800996 |
55 |
Wang M. ; Jang S. K. ; Jang W.-J. ; Kim M. ; Park S.-Y. ; Kim S.-W. ; Kahng S.-J. ; Choi J.-Y. ; Ruoff R. S. ; Song Y. J. ; et al Adv. Mater. 2013, 25, 2746.
doi: 10.1002/adma.201204904 |
56 |
Chen T. ; Dai L. Angew. Chem. Int. Ed. 2015, 54, 14947.
doi: 10.1002/anie.201507246 |
57 |
Zheng X. ; Hu Q. ; Zhou X. ; Nie W. ; Li C. ; Yuan N. Materials & Design 2021, 201, 109476.
doi: 10.1016/j.matdes.2021.109476 |
58 |
Xu Z. ; Peng L. ; Liu Y. ; Liu Z. ; Sun H. ; Gao W. ; Gao C. Chem. Mater. 2017, 29, 319.
doi: 10.1021/acs.chemmater.6b02882 |
59 |
Mirabedini A. ; Foroughi J. ; Thompson B. ; Wallace G. G. Adv. Eng. Mater. 2016, 18, 284.
doi: 10.1002/adem.201500201 |
60 |
Huang T. ; Zheng B. ; Kou L. ; Gopalsamy K. ; Xu Z. ; Gao C. ; Meng Y. ; Wei Z. RSC Adv. 2013, 3, 23957.
doi: 10.1039/c3ra44935a |
61 |
Meng F. ; Li R. ; Li Q. ; Lu W. ; Chou T.-W. Carbon 2014, 72, 250.
doi: 10.1016/j.carbon.2014.01.073 |
62 |
Lin H. ; Dong H. ; Xu S. ; Wang X. ; Zhang J. ; Wang Y. Mater. Lett. 2016, 183, 147.
doi: 10.1016/j.matlet.2016.07.092 |
63 |
Liu Z. ; Li Z. ; Xu Z. ; Xia Z. ; Hu X. ; Kou L. ; Peng L. ; Wei Y. ; Gao C. Chem. Mater. 2014, 26, 6786.
doi: 10.1021/cm5033089 |
64 |
Kumar M. ; Gowda A. ; Kumar S. Part. Part. Sys. Character. 2017, 34, 2103981.
doi: 10.1002/ppsc.201700003 |
65 |
Narayan R. ; Kim J. E. ; Kim J. Y. ; Lee K. E. ; Kim S. O. Adv. Mater. 2016, 28, 3045.
doi: 10.1002/adma.201505122 |
66 |
Tang X. ; Cheng D. ; Ran J. ; Li D. ; He C. ; Bi S. ; Cai G. ; Wang X. Nanotechnol. Rev. 2021, 10, 221.
doi: 10.1515/ntrev-2021-0021 |
67 |
Xiao Y. ; Xin B. ; Chen Z. ; Lin L. ; Liu Y. ; Hu Z. J. Industrial Text. 2019, 48, 1348.
doi: 10.1177/1528083718760805 |
68 |
Wu R. ; Ma L. ; Liu X. Y. Adv. Sci. 2022, 9, 2103981.
doi: 10.1002/advs.202103981 |
69 |
Li J. ; Li J. ; Li L. ; Yu M. ; Ma H. ; Zhang B. J. Mater. Chem. A 2014, 2, 6359.
doi: 10.1039/c4ta00431k |
70 |
Xin G. ; Yao T. ; Sun H. ; Scott S. M. ; Shao D. ; Wang G. ; Lian J. Science 2015, 349, 1083.
doi: 10.1126/science.aaa6502 |
71 |
Mirabedini A. ; Ang A. ; Nikzad M. ; Fox B. ; Lau K.-T. ; Hameed N. Adv. Sci. 2020, 7, 1903501.
doi: 10.1002/advs.201903501 |
72 |
Chen K. ; Wang Q. ; Niu Z. ; Chen J. J. Energy Chem. 2018, 27, 12.
doi: 10.1016/j.jechem.2017.08.015 |
73 | Chang C. ; Chen W. ; Chen Y. ; Chen Y. ; Chen Y. ; Ding F. ; Fan C. ; Fan H. J. ; Fan Z. ; Gong C. ; et al Acta Phys. -Chim. Sin. 2021, 37, 2108017. |
常诚; 陈伟; 陈也; 陈永华; 陈雨; 丁峰; 樊春海; 范红金; 范战西; 龚成; 等. 物理化学学报, 2021, 37, 2108017.
doi: 10.3866/PKU.WHXB202108017 |
|
74 |
Xin G. ; Zhu W. ; Deng Y. ; Cheng J. ; Zhang L. T. ; Chung A. J. ; De S. ; Lian J. Nat. Nanotechnol. 2019, 14, 168.
doi: 10.1038/s41565-018-0330-9 |
75 |
Xu Z. ; Liu Y. ; Zhao X. ; Peng L. ; Sun H. ; Xu Y. ; Ren X. ; Jin C. ; Xu P. ; Wang M. ; et al Adv. Mater. 2016, 28, 6449.
doi: 10.1002/adma.201506426 |
76 |
Xu Z. ; Sun H. ; Zhao X. ; Gao C. Adv. Mater. 2013, 25, 188.
doi: 10.1002/adma.201203448 |
77 |
Jalili R. ; Aboutalebi S. H. ; Esrafilzadeh D. ; Shepherd R. L. ; Chen J. ; Aminorroaya-Yamini S. ; Konstantinov K. ; Minett A. I. ; Razal J. M. ; Wallace G. G. Adv. Funct. Mater. 2013, 23, 5345.
doi: 10.1002/adfm.201300765 |
78 | Chen X.-D. ; Chen Z.-L. ; Sun J.-Y. ; Zhang Y.-F. ; Liu Z.-F. Acta Phys. -Chim. Sin. 2016, 32, 14. |
陈旭东; 陈召龙; 孙靖宇; 张艳锋; 刘忠范. 物理化学学报, 2016, 32, 14.
doi: 10.3866/PKU.WHXB201511133 |
|
79 | Chen Z. ; Gao P. ; Liu Z. Acta Phys. -Chim. Sin. 2020, 36, 1907004. |
陈召龙; 高鹏; 刘忠范. 物理化学学报, 2020, 36, 1907004.
doi: 10.3866/PKU.WHXB201907004 |
|
80 |
Zheng X. ; Yao L. ; Mei X. ; Yu S. ; Zhang W. ; Qiu Y. J. Mater. Sci. 2016, 51, 9889.
doi: 10.1007/s10853-016-0222-z |
81 |
Zhang H. ACS Nano 2015, 9, 9451.
doi: 10.1021/acsnano.5b05040 |
82 |
Xu Z. ; Liu Z. ; Sun H. ; Gao C. Adv. Mater. 2013, 25, 3249.
doi: 10.1002/adma.201300774 |
83 |
Liu Y. ; Xu Z. ; Zhan J. ; Li P. ; Gao C. Adv. Mater. 2016, 28, 7941.
doi: 10.1002/adma.201602444 |
84 |
Ma T. ; Gao H.-L. ; Cong H.-P. ; Yao H.-B. ; Wu L. ; Yu Z.-Y. ; Chen S.-M. ; Yu S.-H. Adv. Mater. 2018, 30, 1706435.
doi: 10.1002/adma.201706435 |
85 |
Liu Y. ; Liang H. ; Xu Z. ; Xi J. ; Chen G. ; Gao W. ; Xue M. ; Gao C. ACS Nano 2017, 11, 4301.
doi: 10.1021/acsnano.7b01491 |
86 |
Xiang C. ; Young C. C. ; Wang X. ; Yan Z. ; Hwang C.-C. ; Cerioti G. ; Lin J. ; Kono J. ; Pasquali M. ; Tour J. M. Adv. Mater. 2013, 25, 4592.
doi: 10.1002/adma.201301065 |
87 |
Zhang Y. ; Peng J. ; Li M. ; Saiz E. ; Wolf S. E. ; Cheng Q. ACS Nano 2018, 12, 8901.
doi: 10.1021/acsnano.8b04322 |
88 |
Cong H.-P. ; Ren X.-C. ; Wang P. ; Yu S.-H. Sci. Rep. 2012, 2, 613.
doi: 10.1038/srep00613 |
89 |
Uetani K. ; Ata S. ; Tomonoh S. ; Yamada T. ; Yumura M. ; Hata K. Adv. Mater. 2014, 26, 5857.
doi: 10.1002/adma.201401736 |
90 |
Sheng N. ; Zhu R. ; Dong K. ; Nomura T. ; Zhu C. ; Aoki Y. ; Habazaki H. ; Akiyama T. J. Mater. Chem. A 2019, 7, 4934.
doi: 10.1039/c8ta11329g |
91 |
Xu X. ; Chen J. ; Zhou J. ; Li B. Adv. Mater. 2018, 30, 1705544.
doi: 10.1002/adma.201705544 |
92 |
Peng L. ; Xu Z. ; Liu Z. ; Guo Y. ; Li P. ; Gao C. Adv. Mater. 2017, 29, 1700589.
doi: 10.1002/adma.201700589 |
93 |
Guo Y. ; Dun C. ; Xu J. ; Mu J. ; Li P. ; Gu L. ; Hou C. ; Hewitt C. A. ; Zhang Q. ; Li Y. ; et al Small 2017, 13, 1702645.
doi: 10.1002/smll.201702645 |
94 |
Li Z. ; Xu Z. ; Liu Y. ; Wang R. ; Gao C. Nat. Commun. 2016, 7, 13684.
doi: 10.1038/ncomms13684 |
95 |
Peng Y. ; Cui Y. Joule 2020, 4, 724.
doi: 10.1016/j.joule.2020.02.011 |
96 |
Zhu B. ; Li W. ; Zhang Q. ; Li D. ; Liu X. ; Wang Y. ; Xu N. ; Wu Z. ; Li J. ; Li X. ; et al Nat. Nanotechnol. 2021,
doi: 10.1038/s41565-021-00987-0 |
97 |
Hsu P. C. ; Song A. Y. ; Catrysse P. B. ; Liu C. ; Peng Y. C. ; Xie J. ; Fan S. H. ; Cui Y. Science 2016, 353, 1019.
doi: 10.1126/science.aaf5471 |
98 |
Pyun K. R. ; Ko S. H. Mater. Today Energy 2019, 12, 431.
doi: 10.1016/j.mtener.2019.04.008 |
99 |
Geim A. K. ; Novoselov K. S. Nat. Mater. 2007, 6, 183.
doi: 10.1038/nmat1849 |
100 |
Shi X. ; Wu Z. S. ; Qin J. ; Zheng S. ; Wang S. ; Zhou F. ; Sun C. ; Bao X. Adv. Mater. 2017, 29, 1703034.
doi: 10.1002/adma.201703034 |
101 |
Zhou C. ; Gao T. ; Wang Y. ; Liu Q. ; Huang Z. ; Liu X. ; Qing M. ; Xiao D. Small 2019, 15, 1803469.
doi: 10.1002/smll.201803469 |
102 |
Wang Z. ; Zhang M. ; Zhou J. ACS Appl. Mater. Interfaces 2016, 8, 11507.
doi: 10.1021/acsami.6b01958 |
103 |
Chen X. ; Ma Y. Adv. Mater. Technol. 2018, 3, 1800041.
doi: 10.1002/admt.201800041 |
104 |
Fang J. ; Xie Z. ; Wallace G. ; Wang X. Appl. Surf. Sci. 2017, 412, 131.
doi: 10.1016/j.apsusc.2017.03.257 |
105 |
Wang K. ; Frewin C. L. ; Esrafilzadeh D. ; Yu C. ; Wang C. ; Pancrazio J. J. ; Romero-Ortega M. ; Jalili R. ; Wallace G. Adv. Mater. 2019, 31, 1805867.
doi: 10.1002/adma.201805867 |
106 |
Liu J. ; Liu G. ; Xu J. ; Liu C. ; Zhou W. ; Liu P. ; Nie G. ; Duan X. ; Jiang F. ACS Appl. Energy Mater. 2020, 3, 6165.
doi: 10.1021/acsaem.0c00001 |
107 |
Ma W. ; Liu Y. ; Yan S. ; Miao T. ; Shi S. ; Yang M. ; Zhang X. ; Gao C. Nano Res. 2016, 9, 3536.
doi: 10.1007/s12274-016-1231-6 |
108 |
Varma S. J. ; Kumar K. S. ; Seal S. ; Rajaraman S. ; Thomas J. Adv. Sci. 2018, 5, 1800340.
doi: 10.1002/advs.201800340 |
109 |
Yao Y. ; Lv T. ; Li N. ; Chen Z. ; Zhang C. ; Chen T. Sci. Bull. 2020, 65, 486.
doi: 10.1016/j.scib.2019.11.013 |
110 |
Li G. ; Hong G. ; Dong D. ; Song W. ; Zhang X. Adv. Mater. 2018, 30, 1801754.
doi: 10.1002/adma.201801754 |
111 |
Lee J. ; Llerena Zambrano B. ; Woo J. ; Yoon K. ; Lee T. Adv. Mater. 2020, 32, e1902532.
doi: 10.1002/adma.201902532 |
112 |
Yang Z. ; Zhao W. ; Niu Y. ; Zhang Y. ; Wang L. ; Zhang W. ; Xiang X. ; Li Q. Carbon 2018, 132, 241.
doi: 10.1016/j.carbon.2018.02.041 |
113 |
Yang Z. ; Zhu M. ; Niu Y. ; Kozliak E. ; Yao B. ; Zhang Y. ; Zhang C. ; Qin T. ; Jia Y. ; Li Q. Adv. Funct. Mater. 2019, 29, 1906813.
doi: 10.1002/adfm.201906813 |
114 |
Yang Z. ; Jia Y. ; Niu Y. ; Yong Z. ; Wu K. ; Zhang C. ; Zhu M. ; Zhang Y. ; Li Q. Chem. Eng. J. 2020, 400, 125835.
doi: 10.1016/j.cej.2020.125835 |
115 |
Yang Z. ; Jia Y. ; Niu Y. ; Zhang Y. ; Zhang C. ; Li P. ; Zhu M. ; Li Q. J. Energy Chem. 2020, 51, 434.
doi: 10.1016/j.jechem.2020.02.023 |
116 |
Mo F. ; Liang G. ; Huang Z. ; Li H. ; Wang D. ; Zhi C. Adv. Mater. 2020, 32, 1902151.
doi: 10.1002/adma.201902151 |
117 |
Shi X. ; Pei S. ; Zhou F. ; Ren W. ; Cheng H.-M. ; Wu Z.-S. ; Bao X. Energy Environ. Sci. 2019, 12, 1534.
doi: 10.1039/c8ee02924e |
118 |
Zhou F. ; Huang H. ; Xiao C. ; Zheng S. ; Shi X. ; Qin J. ; Fu Q. ; Bao X. ; Feng X. ; Mullen K. ; et al J. Am. Chem. Soc. 2018, 140, 8198.
doi: 10.1021/jacs.8b03235 |
119 |
Yu G.-H. ; Han Q. ; Qu L.-T. Chin. J. Polym. Sci. 2019, 37, 535.
doi: 10.1007/s10118-019-2245-9 |
120 |
Yu D. ; Goh K. ; Wang H. ; Wei L. ; Jiang W. ; Zhang Q. ; Dai L. ; Chen Y. Nat. Nanotechnol. 2014, 9, 555.
doi: 10.1038/nnano.2014.93 |
121 |
Ma W. ; Zhang Y. ; Pan S. ; Cheng Y. ; Shao Z. ; Xiang H. ; Chen G. ; Zhu L. ; Weng W. ; Bai H. ; et al Chem. Soc. Rev. 2021, 50, 7009.
doi: 10.1039/d0cs01603a |
122 |
Huang L. ; Santiago D. ; Loyselle P. ; Dai L. Small 2018, 14, 1800879.
doi: 10.1002/smll.201800879 |
123 |
Zheng S. ; Shi X. ; Das P. ; Wu Z. S. ; Bao X. Adv. Mater. 2019, e1900583.
doi: 10.1002/adma.201900583 |
124 |
Chen D. ; Jiang K. ; Huang T. ; Shen G. Adv. Mater. 2020, 32, 1901806.
doi: 10.1002/adma.201901806 |
125 |
Cheng H. ; Meng J. ; Wu G. ; Chen S. Angew. Chem. Int. Ed. 2019, 58, 17465.
doi: 10.1002/anie.201911023 |
126 |
Dhawale D. S. ; Benzigar M. R. ; Wahab M. A. ; Anand C. ; Varghese S. ; Balasubramanian V. V. ; Aldeyab S. S. ; Ariga K. ; Vinu A. Electrochim. Acta 2012, 77, 256.
doi: 10.1016/j.electacta.2012.05.095 |
127 |
Shao Y. ; El-Kady M. F. ; Wang L. J. ; Zhang Q. ; Li Y. ; Wang H. ; Mousavi M. F. ; Kaner R. B. Chem. Soc. Rev. 2015, 44, 3639.
doi: 10.1039/c4cs00316k |
128 |
Wang G. ; Zhang L. ; Zhang J. Chem. Soc. Rev. 2012, 41, 797.
doi: 10.1039/c1cs15060j |
129 |
Liu L. ; Niu Z. ; Chen J. Chem. Soc. Rev. 2016, 45, 4340.
doi: 10.1039/c6cs00041j |
130 |
Meng J. ; Nie W. ; Zhang K. ; Xu F. ; Ding X. ; Wang S. ; Qiu Y. ACS Appl. Mater. Interfaces 2018, 10, 13652.
doi: 10.1021/acsami.8b04438 |
131 |
Meng Y. ; Zhao Y. ; Hu C. ; Cheng H. ; Hu Y. ; Zhang Z. ; Shi G. ; Qu L. Adv. Mater. 2013, 25, 2326.
doi: 10.1002/adma.201300132 |
132 |
Li Q. ; Cheng H. ; Wu X. ; Wang C.-F. ; Wu G. ; Chen S. J. Mater. Chem. A 2018, 6, 14112.
doi: 10.1039/c8ta02124d |
133 |
Jia Y. ; Ahmed A. ; Jiang X. ; Zhou L. ; Fan Q. ; Shao J. Electrochim. Acta 2020, 354, 136731.
doi: 10.1016/j.electacta.2020.136731 |
134 |
Park H. ; Ambade R. B. ; Noh S. H. ; Eom W. ; Koh K. H. ; Ambade S. B. ; Lee W. J. ; Kim S. H. ; Han T. H. ACS Appl. Mater. Interfaces 2019, 11, 9011.
doi: 10.1021/acsami.8b17908 |
135 |
Cai W. ; Lai T. ; Ye J. J. Mater. Chem. A 2015, 3, 5060.
doi: 10.1039/c5ta00365b |
136 |
Sun J. ; Wu C. ; Sun X. ; Hu H. ; Zhi C. ; Hou L. ; Yuan C. J. Mater. Chem. A 2017, 5, 9443.
doi: 10.1039/c7ta00932a |
137 |
Jiang Y. ; Liu J. Energy Environm. Mater. 2019, 2, 30.
doi: 10.1002/eem2.12028 |
138 |
Sun J. ; Guo L. ; Sun X. ; Zhang J. ; Hou L. ; Li L. ; Yang S. ; Yuan C. Batteries Supercaps 2019, 2, 820.
doi: 10.1002/batt.201900021 |
139 |
Wu N. ; Bai X. ; Pan D. ; Dong B. ; Wei R. ; Naik N. ; Patil R. R. ; Guo Z. Adv. Mater. Interfaces 2021, 8
doi: 10.1002/admi.202001710 |
140 |
Jiang B. ; Tian C. ; Wang L. ; Sun L. ; Chen C. ; Nong X. ; Qiao Y. ; Fu H. Appl. Surf. Sci. 2012, 258, 3438.
doi: 10.1016/j.apsusc.2011.11.091 |
141 |
Jiang S. ; Dong S. ; Wu L. ; Chen Z. ; Shen L. ; Zhang X. J. Electroanal. Chem. 2019, 842, 82.
doi: 10.1016/j.jelechem.2019.04.042 |
142 |
Wu G. ; Tan P. ; Wu X. ; Peng L. ; Cheng H. ; Wang C.-F. ; Chen W. ; Yu Z. ; Chen S. .Adv. Funct. Mater. 2017, 27, 1702493.
doi: 10.1002/adfm.201702493 |
143 |
Azhagan M. V. K. ; Vaishampayan M. V. ; Shelke M. V. J. Mater. Chem. A 2014, 2, 2152.
doi: 10.1039/c3ta14076h |
144 |
Chang X. ; El-Kady M. F. ; Huang A. ; Lin C.-W. ; Aguilar S. ; Anderson M. ; Zhu J. Z. J. ; Kaner R. B. Adv. Funct. Mater. 2021, 31, 2102397.
doi: 10.1002/adfm.202102397 |
145 |
Liu T. ; Finn L. ; Yu M. ; Wang H. ; Zhai T. ; Lu X. ; Tong Y. ; Li Y. Nano Lett. 2014, 14, 2522.
doi: 10.1021/nl500255v |
146 |
Boota M. ; Gogotsi Y. Adv. Energy Mater. 2019, 9, 1802917.
doi: 10.1002/aenm.201802917 |
147 |
Jiang Q. ; Kurra N. ; Alhabeb M. ; Gogotsi Y. ; Alshareef H. N. Adv. Energy Mater. 2018, 8, 1703043.
doi: 10.1002/aenm.201703043 |
148 |
Wu H. ; Guo Z. ; Li M. ; Hu G. ; Tang T. ; Wen J. ; Li X. ; Huang H. Electrochim. Acta 2021, 370, 137758.
doi: 10.1016/j.electacta.2021.137758 |
149 |
Zheng X. ; Yao L. ; Qiu Y. ; Wang S. ; Zhang K. ACS Appl. Energy Mater. 2019, 2, 4335.
doi: 10.1021/acsaem.9b00558 |
150 |
Yang Q. ; Xu Z. ; Fang B. ; Huang T. ; Cai S. ; Chen H. ; Liu Y. ; Gopalsamy K. ; Gao W. ; Gao C. J. Mater. Chem. A 2017, 5, 22113.
doi: 10.1039/c7ta07999k |
151 |
Kou L. ; Huang T. ; Zheng B. ; Han Y. ; Zhao X. ; Gopalsamy K. ; Sun H. ; Gao C. Nat. Commun. 2014, 5, 3754.
doi: 10.1038/ncomms4754 |
152 |
Ma Y. ; Li P. ; Sedloff J. W. ; Zhang X. ; Zhang H. ; Liu J. ACS Nano 2015, 9, 1352.
doi: 10.1021/nn505412v |
153 |
Qu G. ; Cheng J. ; Li X. ; Yuan D. ; Chen P. ; Chen X. ; Wang B. ; Peng H. Adv. Mater. 2016, 28, 3646.
doi: 10.1002/adma.201600689 |
154 |
He N. ; Liao J. ; Zhao F. ; Gao W. ACS Appl. Mater. Interfaces 2020, 12, 15211.
doi: 10.1021/acsami.0c00182 |
155 |
Lu Z. ; Foroughi J. ; Wang C. ; Long H. ; Wallace G. G. Adv. Energy Mater. 2018, 8, 1702047.
doi: 10.1002/aenm.201702047 |
156 |
Zhai S. ; Wang C. ; Karahan H. E. ; Wang Y. ; Chen X. ; Sui X. ; Huang Q. ; Liao X. ; Wang X. ; Chen Y. Small 2018, 14, 1800582.
doi: 10.1002/smll.201800582 |
157 |
Zhou X. ; Qin Y. ; He X. ; Li Q. ; Sun J. ; Lei Z. ; Liu Z.-H. ACS Appl. Mater. Interfaces 2020, 12, 11833.
doi: 10.1021/acsami.9b21874 |
158 |
Tang M. ; Wu Y. ; Yang J. ; Xue Y. J. Alloy. Compd. 2020, 828, 153622.
doi: 10.1016/j.jallcom.2019.153622 |
159 |
Ni T. ; Wang S. ; Shi J. ; Du X. ; Cheng Q. ; Dong Z. ; Ruan L. ; Zeng W. ; Guo X. ; Ren X. ; et al Adv. Mater. Technol. 2020, 5, 2000268.
doi: 10.1002/admt.202000268 |
160 |
Wen P. ; Lu P. ; Shi X. ; Yao Y. ; Shi H. ; Liu H. ; Yu Y. ; Wu Z.-S. Adv. Energy Mater. 2021, 11, 2002930.
doi: 10.1002/aenm.202002930 |
161 |
Yan F. ; Tang X. ; Wei Y. ; Chen L. ; Cao G. ; Zhang M. ; Wang T. J. Mater. Chem. A 2015, 3, 12672.
doi: 10.1039/c5ta02107c |
162 |
Li S. ; Shu K. ; Zhao C. ; Wang C. ; Guo Z. ; Wallace G. ; Liu H. K. ACS Appl. Mater. Interfaces 2014, 6, 16679.
doi: 10.1021/am503572w |
163 |
Fang X. ; Weng W. ; Ren J. ; Peng H. Adv. Mater. 2016, 28, 491.
doi: 10.1002/adma.201504241 |
164 |
Hoshide T. ; Zheng Y. ; Hou J. ; Wane Z. ; Li Q. ; Zhao Z. ; Ma R. ; Sasaki T. ; Geng F. Nano Lett. 2017, 17, 3543.
doi: 10.1021/acs.nanolett.7b00623 |
165 |
Chong W. G. ; Huang J.-Q. ; Xu Z.-L. ; Qin X. ; Wang X. ; Kim J.-K. Adv. Funct. Mater. 2017, 27, 1604815.
doi: 10.1002/adfm.201604815 |
166 |
Rao J. ; Liu N. ; Zhang Z. ; Su J. ; Li L. ; Xiong L. ; Gao Y. Nano Energy 2018, 51, 425.
doi: 10.1016/j.nanoen.2018.06.067 |
167 |
Zhang Y. ; Bi Z. ; Liang Y. ; Zuo W. ; Xu G. ; Zhu M. Energy Storage Mater. 2022, 48, 35.
doi: 10.1016/j.ensm.2022.03.002 |
168 |
Xu T. ; Ji W. ; Wang X. ; Zhang Y. ; Zeng H. ; Mao L. ; Zhang M. Angew. Chem. Int. Ed. 2022, e202115074.
doi: 10.1002/anie.202115074 |
169 |
Yin F. ; Hu J. ; Hong Z. ; Wang H. ; Liu G. ; Shen J. ; Wang H.-L. ; Zhang K.-Q. RSC Adv. 2020, 10, 5722.
doi: 10.1039/c9ra10823h |
170 |
Sheng L. ; Wei T. ; Liang Y. ; Jiang L. ; Qu L. ; Fan Z. Carbon 2017, 120, 17.
doi: 10.1016/j.carbon.2017.05.033 |
171 |
Kanahashi K. ; Pu J. ; Takenobu T. Adv. Energy Mater. 2020, 10, 1902842.
doi: 10.1002/aenm.201902842 |
172 |
Shi X.-L. ; Zou J. ; Chen Z.-G. Chem. Rev. 2020, 120, 7399.
doi: 10.1021/acs.chemrev.0c00026 |
173 |
Wang T. ; Liu C. ; Jiang F. ; Xu Z. ; Wang X. ; Li X. ; Li C. ; Xu J. ; Yang X. Phys. Chem. Chem. Phys. 2017, 19, 17560.
doi: 10.1039/c7cp02011b |
174 |
Lin Y. ; Liu J. ; Wang X. ; Xu J. ; Liu P. ; Nie G. ; Liu C. ; Jiang F. Comp. Commun. 2019, 16, 79.
doi: 10.1016/j.coco.2019.09.002 |
175 |
Ma W. ; Liu Y. ; Yan S. ; Miao T. ; Shi S. ; Xu Z. ; Zhang X. ; Gao C. Nano Res. 2018, 11, 741.
doi: 10.1007/s12274-017-1683-3 |
176 | Li H. ; Dong H. ; Li J. ; Wu Z. Acta Phys. -Chim. Sin. 2021, 37, 2007006. |
李淏淼; 董化; 李璟睿; 吴朝新. 物理化学学报, 2021, 37, 2007006.
doi: 10.3866/PKU.WHXB202007006 |
|
177 | Wageh S. ; Al-Ghamdi A. A. ; Zhao L. Acta Phys. -Chim. Sin. 2022, 38, 2111009. |
WagehS.; Al-GhamdiAhmed A; 赵丽. 物理化学学报, 2022, 38, 2111009.
doi: 10.3866/PKU.WHXB202111009 |
|
178 | Zang Z. ; Li H. ; Jiang X. ; Ning Z. Acta Phys. -Chim. Sin. 2021, 37, 2007090. |
臧子豪; 李晗升; 姜显园; 宁志军. 物理化学学报, 2021, 37, 2007090.
doi: 10.3866/PKU.WHXB202007090 |
|
179 | Zhou W. ; Chen Y. ; Zhou H. Acta Physico-Chimica Sinica 2021, 37, 2009044. |
周文韬; 陈怡华; 周欢萍. 物理化学学报, 2021, 37, 2009044.
doi: 10.3866/PKU.WHXB202009044 |
|
180 |
Yang Z. ; Sun H. ; Chen T. ; Qiu L. ; Luo Y. ; Peng H. Angew. Chem. Int. Ed. 2013, 52, 7545.
doi: 10.1002/anie.201301776 |
181 |
Liu K. ; Chen Z. ; Lv T. ; Yao Y. ; Li N. ; Li H. ; Chen T. Nano-Micro Lett. 2020, 12, 64.
doi: 10.1007/s40820-020-0390-x |
182 |
Lin Y.-K. ; Hong Y.-T. ; Shyue J.-J. ; Hsueh C.-H. Superlattices Microstruct. 2019, 126, 42.
doi: 10.1016/j.spmi.2018.12.015 |
183 |
Oh W.-C. ; Areerob Y. Kor. Ceram. Soc. 2021, 58, 50.
doi: 10.1007/s43207-020-00063-8 |
184 |
Ishikawa R. ; Watanabe S. ; Yamazaki S. ; Oya T. ; Tsuboi N. ACS Appl. Energy Mater. 2019, 2, 171.
doi: 10.1021/acsaem.8b01606 |
185 |
Sun K. ; Kou Y. ; Dong H. ; Ye S. ; Zhao D. ; Liu J. ; Shi Q. J. Mater. Chem. A 2020, 9, 1213.
doi: 10.1039/D0TA09035B |
186 |
Sun K. ; Dong H. ; Kou Y. ; Yang H. ; Liu H. ; Li Y. ; Shi Q. Chem. Eng. J. 2021, 419, 129637.
doi: 10.1016/j.cej.2021.129637 |
187 |
Kou Y. ; Sun K. ; Luo J. ; Zhou F. ; Huang H. ; Wu Z. ; Shi Q. Energy Storage Mater. 2020, 34, 508.
doi: 10.1016/j.ensm.2020.10.014 |
188 |
Li Y. ; Sun K. ; Kou Y. ; Liu H. ; Wang L. ; Yin N. ; Dong H. ; Shi Q. Chem. Eng. J. 2022, 429, 132439.
doi: 10.1016/j.cej.2021.132439 |
189 |
Chen X. ; Gao H. ; Tang Z. ; Dong W. ; Li A. ; Wang G. Energy Environ. Sci. 2020, 13, 4498.
doi: 10.1039/d0ee01355b |
190 |
Chen X. ; Tang Z. ; Liu P. ; Gao H. ; Chang Y. ; Wang G. Matter 2020, 3, 708.
doi: 10.1016/j.matt.2020.05.016 |
191 |
Sun K. ; Kou Y. ; Zhang Y. ; Liu T. ; Shi Q. ACS Sustain. Chem. Eng. 2020, 8, 3445.
doi: 10.1021/acssuschemeng.9b07659 |
192 |
Yuan K. ; Shi J. ; Aftab W. ; Qin M. ; Usman A. ; Zhou F. ; Lv Y. ; Gao S. ; Zou R. Adv. Funct. Mater. 2019, 30, 1904228.
doi: 10.1002/adfm.201904228 |
[1] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[2] | Kuangyu Wang, Kai Liu, Hui Wu. Molten Alkali Metal Batteries Based on Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301009-. |
[3] | Cheng Hu, Hongwei Huang. Advances in Piezoelectric Polarization Enhanced Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212048-. |
[4] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[5] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[6] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[7] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[8] | Muqiang Jian, Yingying Zhang, Zhongfan Liu. Graphene Fibers: Preparation, Properties, and Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2007093-. |
[9] | Yi Cheng, Kun Wang, Yue Qi, Zhongfan Liu. Chemical Vapor Deposition Method for Graphene Fiber Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2006046-. |
[10] | Han Li, Fang Li, Jiaguo Yu, Shaowen Cao. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010073-. |
[11] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[12] | Yongli Heng, Zhenyi Gu, Jinzhi Guo, Xinglong Wu. Research Progresses on Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005013-. |
[13] | Cheng Chang, Wei Chen, Ye Chen, Yonghua Chen, Yu Chen, Feng Ding, Chunhai Fan, Hong Jin Fan, Zhanxi Fan, Cheng Gong, Yongji Gong, Qiyuan He, Xun Hong, Sheng Hu, Weida Hu, Wei Huang, Yuan Huang, Wei Ji, Dehui Li, Lain-Jong Li, Qiang Li, Li Lin, Chongyi Ling, Minghua Liu, Nan Liu, Zhuang Liu, Kian Ping Loh, Jianmin Ma, Feng Miao, Hailin Peng, Mingfei Shao, Li Song, Shao Su, Shuo Sun, Chaoliang Tan, Zhiyong Tang, Dingsheng Wang, Huan Wang, Jinlan Wang, Xin Wang, Xinran Wang, Andrew T. S. Wee, Zhongming Wei, Yuen Wu, Zhong-Shuai Wu, Jie Xiong, Qihua Xiong, Weigao Xu, Peng Yin, Haibo Zeng, Zhiyuan Zeng, Tianyou Zhai, Han Zhang, Hui Zhang, Qichun Zhang, Tierui Zhang, Xiang Zhang, Li-Dong Zhao, Meiting Zhao, Weijie Zhao, Yunxuan Zhao, Kai-Ge Zhou, Xing Zhou, Yu Zhou, Hongwei Zhu, Hua Zhang, Zhongfan Liu. Recent Progress on Two-Dimensional Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2108017-. |
[14] | Yao Chen, Haoyang Dong, Yuanyuan Li, Jinping Liu. Recent Advances in 3D Array Anode Materials for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2007075-. |
[15] | Haifeng Que, Huaning Jiang, Xingguo Wang, Pengbo Zhai, Lingjia Meng, Peng Zhang, Yongji Gong. Utilization of the van der Waals Gap of 2D Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2010051-. |
|