Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (2): 2006046.doi: 10.3866/PKU.WHXB202006046
Special Issue: Graphene: Functions and Applications
• REVIEW • Previous Articles Next Articles
Yi Cheng1,2, Kun Wang1,2, Yue Qi1,2,*(), Zhongfan Liu1,2,*()
Received:
2020-06-18
Accepted:
2020-07-30
Published:
2020-08-03
Contact:
Yue Qi,Zhongfan Liu
E-mail:qiyue-cnc@pku.edu.cn;zfliu@pku.edu.cn
About author:
Email: zfliu@pku.edu.cn (Z.L.)Supported by:
Yi Cheng, Kun Wang, Yue Qi, Zhongfan Liu. Chemical Vapor Deposition Method for Graphene Fiber Materials[J]. Acta Phys. -Chim. Sin. 2022, 38(2), 2006046. doi: 10.3866/PKU.WHXB202006046
Fig 1
Fabrication of graphene fibers and their fabrics by the template CVD method 36, 39, 40. (a) Schematic of the template fabrication process of the graphene fiber and graphene@PVA (G@PVA) fiber; (b-e) SEM images of the axial outer surface morphology of graphene fibers (b-c) and G@PVA fibers (d-e). scale bars, 40 μm (b and d) and 500 nm (c and e); (f) Photograph and SEM image of a G@PVA fiber wound on a plastic rod; (g-h) Electrical (g) and mechanical (h) properties of graphene with different amounts of PVA coating. The insets in (g) and (h) show the magnified I-V curves in the range of 4.2-5.5 V and the magnified strain-stress curve, respectively; (i) Schematic of the process for graphene woven fabrics (GWF) preparation; (j-k) Low-magnification (j) and high-magnification (k) SEM images of pristine GWF; (l) Optical images of flexible GWF/PDMS composite films. The inset shows the twisted GWF film by tweezers. (a-g) Adapted with permission from Ref. 36. Copyright 2015, American Chemical Society. (i, l) Adapted with permission from Ref. 39. Copyright 2019, Nature Publishing Group. (j-k) Adapted with permission from Ref. 40. Copyright 2019, Wiley-VCH."
Fig 2
Fabrication of the 3D graphene fibers by the secondary growth method 41. (a) Schematic of the preparation process of 3D graphene fibers (3DGFs); (b) SEM image of the 3DGFs; (c) Thickness of the graphene sheets in the inner parts of the 3DGFs grown for different time; (d-e) Electrical conductivity (σ) of the 3DGFs (d) and EMI SE of the 3DGF membranes (e) for different growth time and different thickness of graphene sheets. Adapted with permission from Ref. 41. Copyright 2018, Wiley-VCH."
Fig 3
Fabrication of porous graphene fibers by the film-scrolling method 44, 45. (a) Schematic of the film-to-fiber self-assembly process; (b-c) Low-magnification (b) and high-magnification (c) SEM images of the as-fabricated graphene fiber. The inset in (b) shows its current density-voltage curve, with a conductivity of 1000 S·m-1; (d) Representative Raman spectra of the graphene film and the further-fabricated graphene fiber; (e) Schematic models of the porous graphene fiber and the G/MnO2 composite fiber; (f) Comparison between the current-voltage (CV) curves of graphene fiber and G/MnO2 fiber at 10 and 200 mV·s-1; (g) Cycling stability of the graphene and G/MnO2 composite electrodes. The inset shows a comparison of typical charge/discharge cycles at a current density of 100 mA·cm-2; (h) Schematic of the fabrication process of GOF@G fibers; (i-j) Electrical (i) and mechanical (j) properties of rGOF and rGO@G fibers with the increasing number of graphene layers. (a-g) Adapted with permission from Ref. 44. Copyright 2011, American Chemical Society. (h-j) Adapted with permission from Ref. 45. Copyright 2019, the Royal Society of Chemistry."
Fig 4
Massive fabrication of GQF by a forced-flow CVD method 53. (a) Schematic of the experimental design; (b) As-grown GQF coiled on inner tube by APCVD (up), forced-flow CVD (middle) and LPCVD (down) method; (c) Raman spectra of graphene on quartz fiber obtained by APCVD (up), forced-flow CVD (middle) and LPCVD (down) respectively. Adapted with permission from Ref. 53. Copyright 2020, American Chemical Society."
Fig 5
The applications of GQF in the vapor sensors and electro-thermal devices 53. (a) Schematic (left) and optical image (right) of the bio-mimetic GQF sensors; (b) Resistance variation in response to acetone vapor under different carrier gas flow rates from 50 to 300 sccm (Standard Cubic Centimeter per Minute). The inset shows the zoom-in ?R/R0-t response curves; (c) The response signal over 5000 cycles under 150 sccm Ar flow; (d-e) A 40 cm × 200 cm further-weaved GQF fabric (GQFF, d) and the its sheet resistance mapping (collected from 11 × 11 points, e); (f) Time-dependent temperature variation of GQFF under different voltages; (g) Electro-thermal temperature of GQFF under different voltage; (h) Infrared image of GQFF heater under vacuum at an applied voltage of 24 V. Adapted with permission from Ref. 53. Copyright 2020, American Chemical Society."
Fig 6
Controlled growth of uniform graphene film on the hole surface of PCF 64. (a) Schematics of Gr-PCF grown by CVD method; (b) SEM image of Gr-PCF end surface; (c-d) 2D-mode Raman intensity mapping (c) and Raman spectrum (d) of graphene at fiber end surface; (e-f) Schematics of graphene growth in the micron-size holes of PCFs at APCVD (e) and LPCVD (f); (g) Representative Raman spectra of graphene at different positions of graphene ribbon film along the gas flow under APCVD (upper panel) and LPCVD (lower panel) growth conditions. (h) Statistics of ID/IG, I2D/IG and the FWHM of graphene Raman peak at different positions. Adapted with permission from Ref. 64. Copyright 2019, Nature Publishing Group."
Fig 7
Fabrication of N-doped graphene glass fibers by PECVD method and their HER performance 69. (a) Schematic of the copper foam-assisted PECVD process; (b) Raman spectra of N-doped graphene grown at 580 ℃ in comparison with pristine graphene grown under the same conditions; (c) SEM image of vertically oriented graphene wrapping directly grown on glass fiber; (d) Spatial distribution of the sheet resistance (2 cm × 2 cm) of the N-doped graphene grown on the glass fiber fabrics; (e, f) Polarization curves (e) and corresponding Tafel plots (f) of the pure glass fiber, non-doped graphene glass fiber, and N-doped graphene glass fiber. Adapted with permission from Ref. 69. Copyright 2019, the Royal Society of Chemistry."
Fig 8
CVD fabrication of graphene-metal fibers and their properties 70, 74, 75. (a) Schematics of the graphene-copper (G-Cu) fiber; (b) Raman spectrum of the graphene printing transferred to 300 nm Si/SiO2 substrate from Cu fiber; (c) SEM images showing different seed density of graphene on the Cu fiber (left) and on the Cu foil (right). Both samples were grown simultaneously; (d) Measurements of tensile stress and strain-to-failure of the G-Cu fiber and pure Cu fiber. All data were averaged from 15 fibers from each sample and deviations were below 5%. The inset shows the measurement set-up; (e) Temperature dependent resistivity of the G-Cu fiber and pure Cu fiber measured from room temperature to 175 ℃; (f) Calculated Cu volume after nitric acid, aqua regia, and 1 mol·L-1 ammonium persulfate treatments. Each etch rate was calculated by averaging the dissolution time obtained from 5 samples; (g) Schematic of the fabrication of the G-Cu nanofibers in PECVD system. The resulting G-Cu nanofibers were analyzed, followed by oxygen etching to obtain the same nanofibers without the graphene coating for a fair comparison; (h) SEM image of the as-grown G-Cu nanofibers; (i) Extracted values of thermal conductivity for G-Cu nanofibers of various dimensions. (a, c-f) Adapted with permission from Ref. 74. Copyright 2018, Elsevier Ltd. (b) Adapted from American Chemical Society publisher. (g-i) Adapted with permission from Ref. 75. Copyright 2015, American Chemical Society."
1 |
Geim A. K. ; Novoselov K. S. Nat. Mater. 2007, 6, 183.
doi: 10.1038/nmat1849 |
2 |
Balandin A. A. Nat. Mater. 2011, 10, 569.
doi: 10.1038/nmat3064 |
3 |
Nair R. R. ; Blake P. ; Grigorenko A. N. ; Novoselov K. S. ; Booth T. J. ; Stauber T. ; Peres N. M. R. ; Geim A. K. Science 2008, 320, 1308.
doi: 10.1126/science.1156965 |
4 |
Zhu Y. ; Murali S. ; Cai W. ; Li X. ; Suk J. W. ; Potts J. R. ; Ruoff R. S. Adv. Mater. 2010, 22, 3906.
doi: 10.1002/adma.201001068 |
5 |
Lee C. ; Wei X. ; Kysar J. W. ; Hone J. Science 2008, 321, 385.
doi: 10.1126/science.1157996 |
6 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896 |
7 |
Wang L. ; Wang Y. ; Xu T. ; Liao H. ; Yao C. ; Liu Y. ; Li Z. ; Chen Z. ; Pan D. ; Sun L. ; et al Nat. Commun. 2014, 5, 5357.
doi: 10.1038/ncomms6357 |
8 |
Meng F. ; Lu W. ; Li Q. ; Byun J. H. ; Oh Y. ; Chou T. W. Adv. Mater. 2015, 27, 5113.
doi: 10.1002/adma.201501126 |
9 |
Nair R. R. ; Wu H. A. ; Jayaram P. N. ; Grigorieva I. V. ; Geim A. K. Science 2012, 335, 442.
doi: 10.1126/science.1211694 |
10 |
Zhu C. ; Han T. Y. ; Duoss E. B. ; Golobic A. M. ; Kuntz J. D. ; Spadaccini C. M. ; Worsley M. A. Nat. Commun. 2015, 6, 6962.
doi: 10.1038/ncomms7962 |
11 |
Yan Y. ; Gong J. ; Chen J. ; Zeng Z. ; Huang W. ; Pu K. ; Liu J. ; Chen P. Adv. Mater. 2019, 31, 1808283.
doi: 10.1002/adma.201808283 |
12 |
Yan C. ; Cho J. H. ; Ahn J. H. Nanoscale 2012, 4, 4870.
doi: 10.1039/c2nr30994g |
13 |
Yi F. ; Ren H. ; Shan J. ; Sun X. ; Wei D. ; Liu Z. Chem. Soc. Rev. 2018, 47, 3152.
doi: 10.1039/c7cs00849j |
14 |
Kim Y. ; Cruz S. S. ; Lee K. ; Alawode B. O. ; Choi C. ; Song Y. ; Johnson J. M. ; Heidelberger C. ; Kong W. ; Choi S. ; et al Nature 2017, 544, 340.
doi: 10.1038/nature22053 |
15 |
Goossens S. ; Navickaite G. ; Monasterio C. ; Gupta S. ; Piqueras J. J. ; Perez R. ; Burwell G. ; Nikitskiy I. ; Lasanta T. ; Galan T. ; et al Nat. Photon. 2017, 11, 366.
doi: 10.1038/nphoton.2017.75 |
16 |
Sun H. ; Xu Z. ; Gao C. Adv. Mater. 2013, 25, 2554.
doi: 10.1002/adma.201204576 |
17 |
Fang B. ; Chang D. ; Xu Z. ; Gao C. Adv. Mater. 2020, 32, e1902664.
doi: 10.1002/adma.201902664 |
18 |
Chen L. ; Liu Y. ; Zhao Y. ; Chen N. ; Qu L. Nanotechnology 2016, 27, 032001.
doi: 10.1088/0957-4484/27/3/032001 |
19 |
Xu Z. ; Gao C. Nat. Commun. 2011, 2, 571.
doi: 10.1038/ncomms1583 |
20 |
Xu Z. ; Sun H. ; Zhao X. ; Gao C. Adv. Mater. 2013, 25, 188.
doi: 10.1002/adma.201203448 |
21 |
Tian Q. ; Xu Z. ; Liu Y. ; Fang B. ; Peng L. ; Xi J. ; Li Z. ; Gao C. Nanoscale 2017, 9, 12335.
doi: 10.1039/c7nr03895j |
22 |
Hu C. ; Zhao Y. ; Cheng H. ; Wang Y. ; Dong Z. ; Jiang C. ; Zhai X. ; Jiang L. ; Qu L. Nano Lett. 2012, 12, 5879.
doi: 10.1021/nl303243h |
23 |
Cheng H. ; Hu Y. ; Zhao F. ; Dong Z. ; Wang Y. ; Chen N. ; Zhang Z. ; Qu L. Adv. Mater. 2014, 26, 2909.
doi: 10.1002/adma.201305708 |
24 |
Jang E. Y. ; Carretero-Gonzalez J. ; Choi A. ; Kim W. J. ; Kozlov M. E. ; Kim T. ; Kang T. J. ; Baek S. J. ; Kim D. W. ; Park Y. W. ; et al Nanotechnology 2012, 23, 235601.
doi: 10.1088/0957-4484/23/23/235601 |
25 |
Chen J. ; Zhao D. ; Jin X. ; Wang C. ; Wang D. ; Ge H. Compos. Sci. Technol. 2014, 97, 41.
doi: 10.1016/j.compscitech.2014.03.023 |
26 |
Ning N. ; Zhang W. ; Yan J. ; Xu F. ; Wang T. ; Su H. ; Tang C. ; Fu Q. Polymer 2013, 54, 303.
doi: 10.1016/j.polymer.2012.11.045 |
27 |
Mahmood H. ; Tripathi M. ; Pugno N. ; Pegoretti A. Compos. Sci. Technol. 2016, 126, 149.
doi: 10.1016/j.compscitech.2016.02.016 |
28 |
Bao Q. ; Zhang H. ; Wang Y. ; Ni Z. ; Yan Y. ; Shen Z. X. ; Loh K. P. ; Tang D. Y. Adv. Funct. Mater. 2009, 19, 3077.
doi: 10.1002/adfm.200901007 |
29 |
Li W. ; Yi L. ; Zheng R. ; Ni Z. ; Hu W. Photon. Res. 2016, 4, 41.
doi: 10.1364/prj.4.000041 |
30 |
Zhang J. ; Lin L. ; Jia K. ; Sun L. ; Peng H. ; Liu Z. Adv. Mater. 2020, 32
doi: 10.1002/adma.201903266 |
31 |
Lin L. ; Deng B. ; Sun J. ; Peng H. ; Liu Z. Chem. Rev. 2018, 118, 9281.
doi: 10.1021/acs.chemrev.8b00325 |
32 |
Lin L. ; Li J. ; Yuan Q. ; Li Q. ; Zhang J. ; Sun L. ; Rui D. ; Chen Z. ; Jia K. ; Wang M. ; et al Sci. Adv. 2019, 5, eaaw8337.
doi: 10.1126/sciadv.aaw8337 |
33 |
Wei D. ; Liu Y. ; Zhang H. ; Huang L. ; Wu B. ; Chen J. ; Yu G. J. Am. Chem. Soc. 2009, 131, 11147.
doi: 10.1021/ja903092k |
34 |
Cui C. ; Qian W. ; Yu Y. ; Kong C. ; Yu B. ; Xiang L. ; Wei F. J. Am. Chem. Soc. 2014, 136, 2256.
doi: 10.1021/ja412219r |
35 |
Chen T. ; Dai L. Angew. Chem. Int. Ed. 2015, 54, 14947.
doi: 10.1002/anie.201507246 |
36 |
Wang X. ; Qiu Y. ; Cao W. ; Hu P. Chem. Mater. 2015, 27, 6969.
doi: 10.1021/acs.chemmater.5b02098 |
37 |
Wang Y. ; Wang L. ; Yang T. ; Li X. ; Zang X. ; Zhu M. ; Wang K. ; Wu D. ; Zhu H. Adv. Funct. Mater. 2014, 24, 4666.
doi: 10.1002/adfm.201400379 |
38 |
He T. ; Lin C. ; Shi L. ; Wang R. ; Sun J. ACS Appl. Mater. Interfaces 2018, 10, 9653.
doi: 10.1021/acsami.7b17975 |
39 |
Li X. ; Sun P. ; Fan L. ; Zhu M. ; Wang K. ; Zhong M. ; Wei J. ; Wu D. ; Cheng Y. ; Zhu H. Sci. Rep. 2012, 2, 395.
doi: 10.1038/srep00395 |
40 |
Tabassian R. ; Nguyen V. H. ; Umrao S. ; Mahato M. ; Kim J. ; Porfiri M. ; Oh I. K. Adv. Sci. 2019, 6, 1901711.
doi: 10.1002/advs.201901711 |
41 |
Zeng J. ; Ji X. ; Ma Y. ; Zhang Z. ; Wang S. ; Ren Z. ; Zhi C. ; Yu J. Adv. Mater. 2018, 30, e1705380.
doi: 10.1002/adma.201705380 |
42 |
Choi B. G. ; Yang M. ; Hong W. H. ; Choi J. W. ; Huh Y. S. ACS Nano 2012, 6, 4020.
doi: 10.1021/nn3003345 |
43 |
Chen Z. ; Ren W. ; Gao L. ; Liu B. ; Pei S. ; Cheng H. M. Nat. Mater. 2011, 10, 424.
doi: 10.1038/nmat3001 |
44 |
Li X. ; Zhao T. ; Wang K. ; Yang Y. ; Wei J. ; Kang F. ; Wu D. ; Zhu H. Langmuir 2011, 27, 12164.
doi: 10.1021/la202380g |
45 |
Choi Y. S. ; Yeo C. S. ; Kim S. J. ; Lee J. Y. ; Kim Y. ; Cho K. R. ; Ju S. ; Hong B. H. ; Park S. Y. Nanoscale 2019, 11, 12637.
doi: 10.1039/c8nr07527a |
46 |
Prewo K. M. ; Brennan J. J. J. Mater. Sci. 1980, 15, 463.
doi: 10.1007/bf00551699 |
47 |
Thomas W. F. Nature 1973, 242, 455.
doi: 10.1038/242455a0 |
48 |
Rioux M. ; Ledemi Y. ; Viens J. ; Morency S. ; Ghaffari S. A. ; Messaddeq Y. RSC Adv. 2015, 5, 40236.
doi: 10.1039/c5ra00681c |
49 |
Guo C. ; Duan H. ; Dong C. ; Zhao G. ; Liu Y. ; Yang Y. Mater. Lett. 2015, 143, 124.
doi: 10.1016/j.matlet.2014.12.091 |
50 | Chen X. D. ; Chen Z. L. ; Sun J. Y. ; Zhang Y. F. ; Liu Z. F. Acta Phys. -Chim. Sin. 2016, 32, 14. |
陈旭东; 陈召龙; 孙靖宇; 张艳锋; 刘忠范. 物理化学学报, 2016, 32, 14.
doi: 10.3866/PKU.WHXB201511133 |
|
51 | Chen Z. L. ; Gao P. ; Liu Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004. |
陈召龙; 高鹏; 刘忠范. 物理化学学报, 2020, 36, 1907004.
doi: 10.3866/PKU.WHXB201907004 |
|
52 |
Chen Y. ; Sun J. ; Gao J. ; Du F. ; Han Q. ; Nie Y. ; Chen Z. ; Bachmatiuk A. ; Priydarshi M. K. ; Ma D. ; et al Adv. Mater. 2015, 27, 7839.
doi: 10.1002/adma.201504229 |
53 |
Cui G. ; Cheng Y. ; Liu C. ; Huang K. ; Li J. ; Wang P. ; Duan X. ; Chen K. ; Liu K. ; Liu Z. ACS Nano 2020, 14, 5938.
doi: 10.1021/acsnano.0c01298 |
54 |
Chen Z. ; Qi Y. ; Chen X. ; Zhang Y. ; Liu Z. Adv. Mater. 2019, 31, 1803639.
doi: 10.1002/adma.201803639 |
55 |
Benabid F. ; Knight J. C. ; Antonopoulos G. ; Russell P. S. J. Science 2002, 298, 399.
doi: 10.1126/science.1076408 |
56 |
He R. ; Sazio P. J. A. ; Peacock A. C. ; Healy N. ; Sparks J. R. ; Krishnamurthi M. ; Gopalan V. ; Badding J. V. Nat. Photon. 2012, 6, 174.
doi: 10.1038/nphoton.2011.352 |
57 |
Koettig F. ; Novoa D. ; Tani F. ; Guenendi M. C. ; Cassataro M. ; Travers J. C. ; Russell P. S. J. Nat. Commun. 2017, 8, 813.
doi: 10.1038/s41467-017-00943-4 |
58 |
Liu M. ; Yin X. ; Ulin-Avila E. ; Geng B. ; Zentgraf T. ; Ju L. ; Wang F. ; Zhang X. Nature 2011, 474, 64.
doi: 10.1038/nature10067 |
59 |
Luo Z. ; Zhou M. ; Weng J. ; Huang G. ; Xu H. ; Ye C. ; Cai Z. Opt. Lett. 2010, 35, 3709.
doi: 10.1364/ol.35.003709 |
60 |
Song Y. W. ; Jang S. Y. ; Han W. S. ; Bae M. K. Appl. Phys. Lett. 2010, 96, 051122.
doi: 10.1063/1.3309669 |
61 |
Liu Z. B. ; He X. ; Wang D. N. Opt. Lett. 2011, 36, 3024.
doi: 10.1364/ol.36.003024 |
62 |
Choi S. Y. ; Jeong H. ; Hong B. H. ; Rotermund F. ; Yeom D. I. Laser Phys. Lett. 2014, 11, 015101.
doi: 10.1088/1612-2011/11/1/015101 |
63 |
Wang H. ; Xu X. ; Li J. ; Lin L. ; Sun L. ; Sun X. ; Zhao S. ; Tan C. ; Chen C. ; Dang W. ; et al Adv. Mater. 2016, 28, 8968.
doi: 10.1002/adma.201603579 |
64 |
Chen K. ; Zhou X. ; Cheng X. ; Qiao R. ; Cheng Y. ; Liu C. ; Xie Y. ; Yu W. ; Yao F. ; Sun Z. ; et al Nat. Photon. 2019, 13, 754.
doi: 10.1038/s41566-019-0492-5 |
65 |
Qi Y. ; Deng B. ; Guo X. ; Chen S. ; Gao J. ; Li T. ; Dou Z. ; Ci H. ; Sun J. ; Chen Z. ; et al Adv. Mater. 2018, 30, 1704839.
doi: 10.1002/adma.201704839 |
66 |
Ci H. ; Ren H. ; Qi Y. ; Chen X. ; Chen Z. ; Zhang J. ; Zhang Y. ; Liu Z. Nano Res. 2018, 11, 3106.
doi: 10.1007/s12274-017-1839-1 |
67 |
Malesevic A. ; Vitchev R. ; Schouteden K. ; Volodin A. ; Zhang L. ; Van Tendeloo G. ; Vanhulsel A. ; Van Haesendonck C. Nanotechnology 2008, 19, 305604.
doi: 10.1088/0957-4484/19/30/305604 |
68 |
Neyts E. C. ; van Duin A. C. T. ; Bogaerts A. J. Am. Chem. Soc. 2012, 134, 1256.
doi: 10.1021/ja2096317 |
69 |
Wei N. ; Li Q. ; Cong S. ; Ci H. ; Song Y. ; Yang Q. ; Lu C. ; Li C. ; Zou G. ; Sun J. ; et al J. Mater. Chem. C 2019, 7, 4813.
doi: 10.1039/c9ta00299e |
70 |
Zhao S. ; Liu X. ; Xu Z. ; Ren H. ; Deng B. ; Tang M. ; Lu L. ; Fu X. ; Peng H. ; Liu Z. ; et al Nano Lett. 2016, 16, 7731.
doi: 10.1021/acs.nanolett.6b03829 |
71 |
Manikandan A. ; Lee L. ; Wang Y. C. ; Chen C. W. ; Chen Y. Z. ; Medina H. ; Tseng J. Y. ; Wang Z. M. ; Chueh Y. L. J. Mater. Chem. C 2017, 5, 13320.
doi: 10.1039/c7ta01767g |
72 |
Liao L. ; Lin Y. C. ; Bao M. ; Cheng R. ; Bai J. ; Liu Y. ; Qu Y. ; Wang K. L. ; Huang Y. ; Duan X. Nature 2010, 467, 305.
doi: 10.1038/nature09405 |
73 |
Li X. S. ; Cai W. W. ; An J. H. ; Kim S. ; Nah J. ; Yang D. X. ; Piner R. ; Velamakanni A. ; Jung I. ; Tutuc E. ; et al Science 2009, 324, 1312.
doi: 10.1126/science.1171245 |
74 |
Jang L. W. ; Zhang L. ; Menghini M. ; Cho H. ; Hwang J. Y. ; Son D. I. ; Locquet J. P. ; Seo J. W. Carbon 2018, 139, 666.
doi: 10.1016/j.carbon.2018.07.033 |
75 |
Mehta R. ; Chugh S. ; Chen Z. Nano Lett. 2015, 15, 2024.
doi: 10.1021/nl504889t |
[1] | Mengshi Yu, Congwei Tan, Xiaoyin Gao, Junchuan Tang, Hailin Peng. Chemical Vapor Deposition Growth of High-Mobility 2D Semiconductor Bi2O2Se: Controllability and Material Quality [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306043-. |
[2] | Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307028-. |
[3] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[4] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[5] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[6] | Zeyao Zhang, Yixi Yao, Yan Li. Modulating the Diameter of Bulk Single-Walled Carbon Nanotubes Grown by FeCo/MgO Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2101055-. |
[7] | Bei Jiang, Jingyu Sun, Zhongfan Liu. Synthesis of Graphene Wafers: from Lab to Fab [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2007068-. |
[8] | Muqiang Jian, Yingying Zhang, Zhongfan Liu. Graphene Fibers: Preparation, Properties, and Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2007093-. |
[9] | Ting Cheng, Luzhao Sun, Zhirong Liu, Feng Ding, Zhongfan Liu. Roles of Transition Metal Substrates in Graphene Chemical Vapor Deposition Growth [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2012006-. |
[10] | Xiaoting Liu, Jincan Zhang, Heng Chen, Zhongfan Liu. Synthesis of Superclean Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2012047-. |
[11] | Heng Chen, Jincan Zhang, Xiaoting Liu, Zhongfan Liu. Effect of Gas-Phase Reaction on the CVD Growth of Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2101053-. |
[12] | Fei Wang, Zhaolong Chen, Jiawei Yang, Hao Li, Jingyuan Shan, Feng Zhang, Baolu Guan, Zhongfan Liu. Heating Characteristics of Graphene Glass Transparent Films [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2001024-. |
[13] | Zhaolong Chen, Peng Gao, Zhongfan Liu. Graphene-Based LED: from Principle to Devices [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907004-. |
[14] | Fang LIU,Lufeng ZHANG,Qian DONG,Zhuo CHEN. Synthesis and Characterization of Small Size Gold-Graphitic Nanocapsules [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 651-656. |
[15] | Qin WANG,Minmin XUE,Zhuhua ZHANG. Chemical Synthesis of Borophene: Progress and Prospective [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 565-571. |
|