Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (2): 2008044.doi: 10.3866/PKU.WHXB202008044
Special Issue: Lithium Metal Anodes
• REVIEW • Previous Articles Next Articles
Chen Wu, Ying Zhou, Xiaolong Zhu, Minzhi Zhan, Hanxi Yang, Jiangfeng Qian()
Received:
2020-08-16
Accepted:
2020-09-10
Published:
2020-09-16
Contact:
Jiangfeng Qian
E-mail:jfqian@whu.edu.cn
About author:
Jiangfeng Qian, Email: jfqian@whu.edu.cnSupported by:
Chen Wu, Ying Zhou, Xiaolong Zhu, Minzhi Zhan, Hanxi Yang, Jiangfeng Qian. Research Progress on High Concentration Electrolytes for Li Metal Batteries[J]. Acta Phys. -Chim. Sin. 2021, 37(2), 2008044. doi: 10.3866/PKU.WHXB202008044
Fig 1
The solvation structure of high concentration electrolytes. a) Schematic illustration of the solvation structures for dilute and high concentration solution. Adapted with permission from Ref. 27. Copyright 2014, American Chemical Society. b) Raman spectra for high concentrated electrolyte solution. Adapted with permission from Ref. 27. Copyright 2014, American Chemical Society."
Fig 2
The physiochemical property of high-concentrated electrolyte solution. a) Typical physiochemical properties of high-concentrated electrolyte solution. Adapted with permission from Ref. 35. Copyright 2015, Journal of the Electrochemical Society. b) Supercells used and projected density of states (PDOS) obtained in quantum mechanical DFT-MD simulations on LiTFSI-AN electrolyte solutions with different concentrations. Adapted with permission from Ref. 27."
Fig 3
a) SEM images of the morphologies of Li metal after plating on Cu substrates in 1 mol·L-1 LiPF6-PC dilute electrolyte and 4 mol·L-1 LiFSI-DME high-concentrated electrolyte; b) the schematic of stabilizing active cathode with ether-based high-concentrated electrolyte; c) TEM characterization of NMC cathodes in different ether-based electrolyte with various salt; d) electrochemical behavior of different ether electrolytes in Li‖NMC batteries and on the Pt electrode. (a) Adapted with permission from Ref 31. Copyright 2015, Springer Nature; (b) Adapted with permission from Ref. 40. Copyright 2019, American Chemical Society; (c) Adapted from Ref. 38. Copyright 2018, Springer Nature; (d) Adapted from Ref 38. Copyright 2018, Springer Nature."
Fig 4
a) Schematic illustration of the effect of the reactive fluorine content in the concentrated carbonate electrolyte on a Li-metal anode and Ni-Rich cathode; b) electrochemical performance of NMC622//Li LMBs in 10 mol·L-1 LiFSI-EC/DMC and 1 mol·L-1 LiPF6-EC/DMC electrolytes; c) surface chemical and microscopic analysis of lithium anode in electrolyte with different fluorine content. (a, b) Adapted from Ref. 41. Copyright 2017, Elsevier Inc.; (c) Adapted from Ref. 42. Copyright 2018, National Academy of Sciences."
Table 1
Compassion of the cycling performance of Li metal batteries based on high concentration electrolytes (HCEs)."
Classification | Electrolyte | Li metal batteries | Cycling Performance | Ref. |
ether-based HCE | 7 mol·L-1 LiTFSI /DOL-DME | Li//S | 74% @ 100th | |
4 mol·L-1 LiFSI-DME | Li//Cu | CE = 99.2% for 1000 cycles | ||
3 mol·L-1 LiFNFSI-DOL/DME | Li//LiFePO4 | 98.5% @ 200th | ||
2 mol·L-1 LiDFOB + 2 mol·L-1 LiTFSI -DME | Li//NCM333 | 80% @ 500th | ||
3 mol·L-1 LiTFSI-DME | Li//O2 | cycle life of 40th | ||
ester-based HCE | 10 mol·L-1 LiFSI-EC/DMC | Li//NCM622 | 86% @ 100th | |
7 mol·kg-1 LiFSI-FEC | Li//LiNi0.5Mn1.5O4 | 94.26% @ 150th | ||
4 mol·L-1 LiTFSI+0.5 mol·L-1 LiDFOB-FEC/DMC | Li//LiNi0.5Mn1.5O4 | 88.5% @ 500th | ||
sulfone-based HCE | LiFSI-SL = 1: 2.5 | Li//Cu | CE = 99.2% for 400 cycles | |
4 mol·L-1 LiNO3-DMSO | Li//Cu | CE > 80% for 90 cycles | ||
LiTFSI-DMSO = 1 : 3 | Li//O2 | cycle life of 90th | ||
nitrile-based HCE | LiTFSI-AN = 1 : 2 | Li//Se | 86% @ 200th | |
phosphate-based HCE | LiFSI-TEP = 1 : 1.5 | Li//Cu | CE > 80% for 90 cycles | |
ionic liquid-based HCE | 5 mol·L-1 LiFSI + 0.16 mol·L-1 NaTFSI-[EMIm]FSI | Li//LiCoO2 | 81% @ 1200th |
Fig 5
a) Schematic illustration for dilution by BTFE of an HCE consisting of 3.2 mol·L-1 LiFSI/TEP to form LHCEs; b) viscosity and ionic conductivity of sulfone-based electrolytes under different temperatures and wettability tests of these electrolytes on polyethylene (PE) separator. (a) Adapted from Ref. 53. Copyright 2018, Elsevier Inc.; (b) Adapted from Ref. 55. Copyright 2018, Elsevier Inc."
Fig 7
a) Nonpolar dilute-based electrolyte design strategy and the properties; b) The solvation structure and electrochemical performance of 1.2 mol·L-1 LiFSI/TEP-BTFE = 1–3 localized high-concentrated electrolyte; c) Electrochemical Behavior of Sulfone-Based Electrolyte in High-Voltage Li//LNMO Cells. (a) Adapted from Ref. 60. Copyright 2019, Springer Nature; (b) Adapted from Ref. 53. Copyright 2018, Elsevier Inc.; (c) Adapted from Ref. 55. Copyright 2018, Elsevier Inc."
Table 2
Compassion of the cycling performance of Li metal batteries based on localized-high concentration electrolytes (LHCEs)."
Dilute | Electrolyte | Li metal battery | Cycling Performance | Ref. |
HFE | LiTFSI-G4/HFE(1 : 1 : 4) | Li//S | 85% @ 100th | |
1 mol·L-1 LiPF6 FEC/FEMC/HFE | Li//NMC811 | 90% @ 400th | ||
1 mol·L-1 LiPF6 FEC/FEMC/HFE | Li// LiCoPO4 | 93% @ 1000th | ||
1 mol·L-1 LiPF6 FEC/FEMC/HFE + 2% LiDFOB | Li//LiNiO2 | 80% @ 400th | ||
1 mol·L-1 LiPF6 + 0.02 mol·L-1 LiDFOB-FEC/FDEC/HFE | Li //LiCoMnO4 | 80% @ 1000th | ||
1.2 mol·L-1 LiPF6 FEC/DMC/HFE + 0.15 mol·L-1 LiDFOB | Li//LiCoO2 | 84% @ 300th | ||
1.28 mol·L-1 LiFSI-FEC/FEMC/HFE | Li //NCA | 90% @4 50th (-20 ℃) | ||
BTFE | 1.2 mol·L-1 LiFSI-DMC/BTFE | Li//NCM333 | 80% @ 700th | |
1.2 mol·L-1 LiFSI-TEP/BTFE | Li//NCM622 | 97% @ 600th | ||
TTE | LiFSI-1.2 DME/3TTE | Li//NCM811 | 90% @ 250th | |
LiFSI-3TMS/3TTE | Li//NCM111 | 80% @ 150th | ||
OFE | 1 mol·L-1 LiFSI-95OFE/5DME | Li//S | 60% @ 150th | |
1, 2-dfBen | 2 mol·L-1 LiFSI-DMC/1, 2-dfBen | Li//NCM523 | 82% @ 140th |
1 |
Yang Z. ; Zhang J. ; Kintner-Meyer M. C. W. ; Lu X. ; Choi D. ; Lemmon J. P. ; Liu J. Chem. Rev. 2011, 111, 3577.
doi: 10.1021/cr100290v |
2 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
3 |
Xu W. ; Wang J. ; Ding F. ; Chen X. ; Nasybulin E. ; Zhang Y. ; Zhang J. G. Energy Environ. Sci. 2014, 7, 513.
doi: 10.1039/c3ee40795k |
4 |
Zhang Y. ; Zuo T. T. ; Popovic J. ; Lim K. ; Yin Y. X. ; Maier J. ; Guo Y. G. Mater. Today 2020, 33, 56.
doi: 10.1016/j.mattod.2019.09.018 |
5 |
Bruce P. G. ; Freunberger S. A. ; Hardwick L. J. ; Tarascon J. M. Nat. Mater. 2012, 11, 19.
doi: 10.1038/NMAT3191 |
6 | Zhang Y. T. ; Liu Z. J. ; Wang J. W. ; Wang L. ; Peng Z. Q. Acta Phys. -Chim. Sin. 2017, 33, 486. |
张彦涛; 刘圳杰; 王佳伟; 王亮; 彭章泉. 物理化学学报, 2017, 33, 486.
doi: 10.3866/PKU.WHXB201611181 |
|
7 |
Zhang X. ; Wang A. ; Liu X. ; Luo J. Acc. Chem. Res. 2019, 52, 3223.
doi: 10.1021/acs.accounts.9b00437 |
8 | Cheng X. B. ; Zhang Q. Prog. Chem. 2018, 30, 51. |
程新兵;张强. 化学进展, 2018, 30, 51.
doi: 10.7536/PC170704 |
|
9 |
Zhang X. Q. ; Chen X. ; Cheng X. B. ; Li B. Q. ; Shen X. ; Yan C. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2018, 57, 5301.
doi: 10.1002/anie.201801513 |
10 |
Jie Y. ; Ren X. ; Cao R. ; Cai W. ; Jiao S. Adv. Funct. Mater. 2020, 30, 1910777.
doi: 10.1002/adfm.201910777 |
11 |
Wang C. ; Fu K. ; Kammampata S. P. ; McOwen D. W. ; Samson A. J. ; Zhang L. ; Hitz G. T. ; Nolan A. M. ; Wachsman E. D. ; Mo Y. ; et al Chem. Rev. 2020, 120, 4257.
doi: 10.1021/acs.chemrev.9b00427 |
12 | Jin F. ; Li J. ; Hu C. J. ; Dong H. C. ; Chen P. ; Shen Y. B. ; Chen L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399. |
金锋; 李静; 胡晨吉; 董厚才; 陈鹏; 沈炎宾; 陈立桅. 物理化学学报, 2019, 35, 1399.
doi: 10.3866/PKU.WHXB201904085 |
|
13 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Wei F. ; Zhang J. G. ; Zhang Q. Adv. Sci. 2016, 3, 1500213.
doi: 10.1002/advs.201500213 |
14 |
Wu C. ; Guo F. ; Zhuang L. ; Ai X. ; Zhong F. ; Yang H. ; Qian J. ACS Energy Lett. 2020, 5, 1644.
doi: 10.1021/acsenergylett.0c00804 |
15 |
Zhang R. ; Li N. W. ; Cheng X. B. ; Yin Y. X. ; Zhang Q. ; Guo Y. G. Adv. Sci. 2017, 4, 1600445.
doi: 10.1002/advs.201600445 |
16 |
Guo F. ; Wu C. ; Chen S. ; Ai X. ; Zhong F. ; Yang H. ; Qian J. ACS Mater. Lett. 2020, 2, 358.
doi: 10.1021/acsmaterialslett.0c00001 |
17 |
Li S. ; Jiang M. ; Xie Y. ; Xu H. ; Jia J. ; Li J. Adv. Mater. 2018, 30, e1706375.
doi: 10.1002/adma.201706375 |
18 |
Wan G. ; Guo F. ; Li H. ; Cao Y. ; Ai X. ; Qian J. ; Li Y. ; Yang H. ACS Appl. Mater. Interfaces 2018, 10, 593.
doi: 10.1021/acsami.7b14662 |
19 |
Qian J. ; Xu W. ; Bhattacharya P. ; Engelhard M. ; Henderson W. A. ; Zhang Y. ; Zhang J. G. Nano Energy 2015, 15, 135.
doi: 10.1016/j.nanoen.2015.04.009 |
20 |
Yamada Y. ; Wang J. ; Ko S. ; Watanabe E. ; Yamada A. Nat. Energy 2019, 4, 1.
doi: 10.1038/s41560-019-0336-z |
21 | Chang Z. ; Wang J. ; Wu Z. ; Zhao J. ; Lu S. Prog. Chem. 2018, 30, 170. |
常增花; 王建涛; 武兆辉; 赵金玲; 卢世刚. 化学进展, 2018, 30, 170.
doi: 10.7536/PC180344 |
|
22 |
Yu Z. ; Zhang J. ; Liu T. ; Tang B. ; Yang X. ; Zhou X. ; Cui G. Acta Chim. Sin. 2020, 78, 114.
doi: 10.6023/a19100385 |
23 |
Alia J. M. ; Edwards H. G. M. ; Moore J. J. Raman. Spectrosc. 1995, 26, 715.
doi: 10.1002/jrs.1250260819 |
24 |
Seo D. M. ; Boyle P. D. ; Sommer R. D. ; Daubert J. S. ; Borodin O. ; Henderson W. A. J. Phys. Chem. B 2014, 118, 13601.
doi: 10.1021/jp505006x |
25 |
Cazzanelli E. ; Mustarelli P. ; Benevelli F. ; Appetecchi G. B. ; Croce F. Solid State Ionics 1996, 86–88, 379.
doi: 10.1016/0167-2738(96)00154-3 |
26 |
Suo L. ; Zheng F. ; Hu Y. S. ; Chen L. Chin. Phys. B 2016, 25, 016101.
doi: 10.1088/1674-1056/25/1/016101 |
27 |
Yamada Y. ; Furukawa K. ; Sodeyama K. ; Kikuchi K. ; Yaegashi M. ; Tateyama Y. ; Yamada A. J. Am. Chem. Soc. 2014, 136, 5039.
doi: 10.1021/ja412807w |
28 |
Ugata Y. ; Tatara R. ; Ueno K. ; Dokko K. ; Watanabe M. J. Chem. Phys. 2020, 152, 104502.
doi: 10.1063/1.5145340 |
29 |
Yoshida K. ; Tsuchiya M. ; Tachikawa N. ; Dokko K. ; Watanabe M. J. Phys. Chem. C 2011, 115, 18384.
doi: 10.1021/jp206881t |
30 |
Suo L. ; Hu Y. S. ; Li H. ; Armand M. ; Chen L. Nat. Commun. 2013, 4, 1481.
doi: 10.1038/ncomms2513 |
31 |
Qian J. ; Henderson W. A. ; Xu W. ; Bhattacharya P. ; Engelhard M. ; Borodin O. ; Zhang J. G. Nat. Commun. 2015, 6, 6362.
doi: 10.1038/ncomms7362 |
32 |
Yoshida K. ; Nakamura M. ; Kazue Y. ; Tachikawa N. ; Tsuzuki S. ; Seki S. ; Dokko K. ; Watanabe M. J. Am. Chem. Soc. 2011, 133, 13121.
doi: 10.1021/ja203983r |
33 |
McOwen D. W. ; Seo D. M. ; Borodin O. ; Vatamanu J. ; Boyle P. D. ; Henderson W. A. Energy Environ. Sci. 2014, 7, 416.
doi: 10.1039/C3EE42351D |
34 |
Matsumoto K. ; Inoue K. ; Nakahara K. ; Yuge R. ; Noguchi T. ; Utsugi K. J. Power Sources 2013, 231, 234.
doi: 10.1016/j.jpowsour.2012.12.028 |
35 |
Yamada Y. ; Yamada A. J. Electrochem. Soc. 2015, 162, A2406.
doi: 10.1149/2.0041514jes |
36 |
Moon H. ; Mandai T. ; Tatara R. ; Ueno K. ; Yamazaki A. ; Yoshida K. ; Seki S. ; Dokko K. ; Watanabe M. J. Phys. Chem. C 2015, 119, 3957.
doi: 10.1021/jp5128578 |
37 |
Fang Z. ; Ma Q. ; Liu P. ; Ma J. ; Hu Y. S. ; Zhou Z. ; Li H. ; Huang X. ; Chen L. ACS Appl. Mater. Inter. 2017, 9, 4282.
doi: 10.1021/acsami.6b03857 |
38 |
Jiao S. ; Ren X. ; Cao R. ; Engelhard M. H. ; Liu Y. ; Hu D. ; Mei D. ; Zheng J. ; Zhao W. ; Li Q. Nat. Energy 2018, 3, 739.
doi: 10.1038/s41560-018-0199-8 |
39 |
Liu B. ; Xu W. ; Yan P. ; Sun X. ; Bowden M. E. ; Read J. ; Qian J. ; Mei D. ; Wang C. ; Zhang J. Adv. Funct. Mater. 2016, 26, 605.
doi: 10.1002/adfm.201503697 |
40 |
Ren X. ; Zou L. ; Jiao S. ; Mei D. ; Engelhard M. H. ; Li Q. ; Lee H. ; Niu C. ; Adams B. D. ; Wang C. ; et al ACS Energy Lett. 2019, 4, 896.
doi: 10.1021/acsenergylett.9b00381 |
41 |
Fan X. ; Chen L. ; Ji X. ; Deng T. ; Hou S. ; Chen J. ; Zheng J. ; Wang F. ; Jiang J. ; Xu K. ; Wang C. Chem 2018, 4, 174.
doi: 10.1016/j.chempr.2017.10.017 |
42 |
Suo L. ; Xue W. ; Gobet M. ; Greenbaum S. G. ; Wang C. ; Chen Y. ; Yang W. ; Li Y. ; Li J. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 1156.
doi: 10.1073/pnas.1712895115 |
43 |
Wang W. ; Zhang J. ; Yang Q. ; Wang S. ; Wang W. ; Li B. ACS Appl. Mater. Inter. 2020, 12, 22901.
doi: 10.1021/acsami.0c03952 |
44 |
Dokko K. ; Watanabe D. ; Ugata Y. ; Thomas M. L. ; Tsuzuki S. ; Shinoda W. ; Hashimoto K. ; Ueno K. ; Umebayashi Y. ; Watanabe M. J. Phys. Chem. B 2018, 122, 10736.
doi: 10.1021/acs.jpcb.8b09439 |
45 |
Maeyoshi Y. ; Ding D. ; Kubota M. ; Ueda H. ; Abe K. ; Kanamura K. ; Abe H. ACS Appl. Mater. Inter. 2019, 11, 25833.
doi: 10.1021/acsami.9b05257 |
46 |
Togasaki N. ; Momma T. ; Osaka T. J. Power Sources 2016, 307, 98.
doi: 10.1016/j.jpowsour.2015.12.123 |
47 |
Liu B. ; Xu W. ; Yan P. ; Kim S. T. ; Engelhard M. H. ; Sun X. ; Mei D. ; Cho J. ; Wang C. M. ; Zhang J. G. Adv. Energy Mater. 2017, 7, 1602605.
doi: 10.1002/aenm.201602605 |
48 |
Qi X. ; Yang Y. ; Jin Q. ; Yang F. ; Xie Y. ; Sang P. ; Liu K. ; Zhao W. ; Xu X. ; Fu Y. ; et al Angew. Chem. Int. Ed. 2020, 59, 13908.
doi: 10.1002/anie.202004424 |
49 |
Xiao L. ; Zeng Z. ; Liu X. ; Fang Y. ; Jiang X. ; Shao Y. ; Zhuang L. ; Ai X. ; Yang H. ; Cao Y. ; Liu J. ACS Energy Lett. 2019, 4, 483.
doi: 10.1021/acsenergylett.8b02527 |
50 |
Sun H. ; Zhu G. ; Zhu Y. ; Lin M. C. ; Chen H. ; Li Y. Y. ; Hung W. H. ; Zhou B. ; Wang X. ; Bai Y. ; et al Adv. Mater. 2020, 32, e2001741.
doi: 10.1002/adma.202001741 |
51 |
Dokko K. ; Tachikawa N. ; Yamauchi K. ; Tsuchiya M. ; Yamazaki A. ; Takashima E. ; Park J. W. ; Ueno K. ; Seki S. ; Serizawa N. ; Watanabe M. J. Electrochem. Soc. 2013, 160, A1304.
doi: 10.1149/2.111308jes |
52 |
Chen S. ; Zheng J. ; Mei D. ; Han K. S. ; Engelhard M. H. ; Zhao W. ; Xu W. ; Liu J. ; Zhang J. G. Adv. Mater. 2018, 30, e1706102.
doi: 10.1002/adma.201706102 |
53 |
Chen S. ; Zheng J. ; Yu L. ; Ren X. ; Engelhard M. H. ; Niu C. ; Lee H. ; Xu W. ; Xiao J. ; Liu J. Joule 2018, 2, 1548.
doi: 10.1016/j.joule.2018.05.002 |
54 |
Zheng Y. ; Soto F. A. ; Ponce V. ; Seminario J. M. ; Cao X. ; Zhang J. ; Balbuena P. B. J. Mater. Chem. 2019, 7, 25047.
doi: 10.1039/c9ta08935g |
55 |
Ren X. ; Chen S. ; Lee H. ; Mei D. ; Engelhard M. H. ; Burton S. D. ; Zhao W. ; Zheng J. ; Li Q. ; Ding M. S. ; et al Chem 2018, 4, 1877.
doi: 10.1016/j.chempr.2018.05.002 |
56 |
Fan X. ; Chen L. ; Borodin O. ; Ji X. ; Chen J. ; Hou S. ; Deng T. ; Zheng J. ; Yang C. ; Liou S. C. ; et al Nat. Nanotechnol. 2018, 13, 715.
doi: 10.1038/s41565-018-0183-2 |
57 |
Deng T. ; Fan X. ; Cao L. ; Chen J. ; Hou S. ; Ji X. ; Chen L. ; Li S. ; Zhou X. ; Hu E. ; et al Joule 2019, 3, 2550.
doi: 10.1016/j.joule.2019.08.004 |
58 |
Chen L. ; Fan X. ; Hu E. ; Ji X. ; Chen J. ; Hou S. ; Deng T. ; Li J. ; Su D. ; Yang X. ; Wang C. Chem 2019, 5, 896.
doi: 10.1016/j.chempr.2019.02.003 |
59 |
Lin S. ; Zhao J. ACS Appl. Mater. Inter. 2020, 12, 8316.
doi: 10.1021/acsami.9b21679 |
60 |
Fan X. ; Ji X. ; Chen L. ; Chen J. ; Deng T. ; Han F. ; Yue J. ; Piao N. ; Wang R. ; Zhou X. ; et al Nat. Energy 2019, 4, 882.
doi: 10.1038/s41560-019-0474-3 |
61 |
Ren X. ; Zou L. ; Cao X. ; Engelhard M. H. ; Liu W. ; Burton S. D. ; Lee H. ; Niu C. ; Matthews B. E. ; Zhu Z. ; et al Joule 2019, 3, 1662.
doi: 10.1016/j.joule.2019.05.006 |
62 |
Zheng J. ; Ji G. ; Fan X. ; Chen J. ; Li Q. ; Wang H. ; Yang Y. ; DeMella K. C. ; Raghavan S. R. ; Wang C. Adv. Energy Mater. 2019, 9, 1803774.
doi: 10.1002/aenm.201803774 |
63 |
Yoo D. J. ; Yang S. ; Kim K. J. ; Choi J. W. Angew. Chem. Int. Ed. 2020.
doi: 10.1002/anie.202003663 |
[1] | Jun Guan, Nianwu Li, Le Yu. Artificial Interphase Layers for Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2009011-. |
[2] | Ya Liu, Lei Zheng, Wei Gu, Yanbin Shen, Liwei Chen. Surface Passivation of Lithium Metal via In situ Polymerization [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2004058-. |
[3] | Fanfan Liu, Zhiwen Zhang, Shufen Ye, Yu Yao, Yan Yu. Challenges and Improvement Strategies Progress of Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2006021-. |
[4] | Muqin Wang, Zhe Peng, Huan Lin, Zhendong Li, Jian Liu, Zhongmin Ren, Haiyong He, Deyu Wang. A Framework with Enriched Fluorinated Sites for Stable Li Metal Cycling [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007016-. |
[5] | Wei-Wei KONG,Shuang GUO,Yong-Min ZHANG,Xue-Feng LIU. Redox-Responsive Interfacial Properties of Se-Containing Sulfobetaine Surfactant [J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1205-1213. |
[6] | Zong-Yan ZHAO,Fan TIAN. Theoretical Study of the Interfacial Structure and Properties of a CdS/FeP Composite Photocatalyst [J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2511-2517. |
[7] | GAO Hong-Quan, LAI Yan-Qing, ZHANG Zhi-An, LIU Ye-Xiang. Electrochemical Behaviors of New Lithium Salt LiBC2O4F2 in EC+DMC Solvents [J]. Acta Phys. -Chim. Sin., 2009, 25(05): 905-910. |
[8] | Wang Zhan-Liang;Tang Zhi-Yuan. Research on the Interfacial Properties of Polymer Electrolyte by A.C.Impedance [J]. Acta Phys. -Chim. Sin., 2003, 19(12): 1097-1101. |
|