Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (4): 2004046.doi: 10.3866/PKU.WHXB202004046
• ARTICLE • Previous Articles Next Articles
Na Zhao1,2, Jing Peng2, Jianping Wang1, Maolin Zhai2,*()
Received:
2020-04-15
Accepted:
2020-05-06
Published:
2020-05-11
Contact:
Maolin Zhai
E-mail:mlzhai@pku.edu.cn
About author:
Maolin Zhai, Email: mlzhai@pku.edu.cn; Tel.: +86-10-62753794Supported by:
Na Zhao, Jing Peng, Jianping Wang, Maolin Zhai. Novel Carboxy-Functionalized PVP-CdS Nanopopcorns with Homojunctions for Enhanced Photocatalytic Hydrogen Evolution[J]. Acta Phys. -Chim. Sin. 2022, 38(4), 2004046. doi: 10.3866/PKU.WHXB202004046
"
Samples | C 1s spectrum (atomic ratio (%)) | N 1s/Cd 3d atomic ratios (%) | |||||
COO- | C=O | C-N | C | COO-/C-N atomic ratio (%) | Hydrolysis degree (%) a | ||
P-CdS | 0.0 | 16.9 | 40.2 | 43.0 | 0.0 | 0.0 | 35.5 |
MP-CdS-1 | 2.5 | 15.4 | 37.7 | 44.5 | 6.5 | 13.7 | 11.6 |
MP-CdS-2 | 2.3 | 14.7 | 36.7 | 46.2 | 6.3 | 13.6 | 9.8 |
MP-CdS-3 | 3.4 | 14.2 | 36.3 | 46.1 | 9.4 | 19.4 | 7.3 |
MP-CdS-4 | 1.9 | 15.1 | 38.8 | 44.3 | 4.8 | 11.0 | 13.0 |
MP-CdS-5 | 1.5 | 15.6 | 39.7 | 43.2 | 3.9 | 8.9 | 15.1 |
"
Samples | Light Source | Co-catalyst | Reaction solution | Activity/(μmol·g-1·h-1) | Ref. (year) |
CdS nanorods | 150 W Xe > 420 nm | No | Lactic acid | 206 | |
CdS modified by acid red-94 | 300 W Xe > 420 nm | No | Na2SO3 + Na2S | 475 | |
CdS nanodots | 300 W Xe > 420 nm | No | Na2SO3 + Na2S | 83 | |
Hollow Porous CdS | 300 W Xe > 400 nm | No | Na2SO3 + Na2S | 1110 | |
Petal-like CdS | 300 W Xe > 420 nm | No | Lactic acid | 248 | |
CdS nanoparticles | 320 W Xe > 420 nm | No | Lactic acid | 481 | |
CdS nanoparticles | 300 W Xe > 420 nm | 0.37%(w) Pt | Na2S | 26 | |
CdS nanorods | 300 W Xe > 420 nm | 3%(w) Pt | Na2SO3 + Na2S | 286.5 | |
CdS nanorods | 300 W Xe > 420 nm | No | Na2SO3 + Na2S | 10.4 | |
MP-CdS-3 | 300 W Xe > 420 nm 100 mW·cm-2 | No | Lactic acid | 477 | this work |
1 |
Ning X. ; Lu G. Nanoscale 2020, 12, 1213.
doi: 10.1039/C9NR09183A |
2 |
Zhang J. ; Chen X. ; Bai Y. ; Li C. ; Gao Y. ; Li R. ; Li C. J. Mater. Chem. A 2019, 7, 10264.
doi: 10.1039/C8TA08199A |
3 |
Li R. ; Li C. Adv. Catal. 2017, 60, 1.
doi: 10.1016/bs.acat.2017.09.001 |
4 | Cao P. F. ; Hu Y. ; Zhang Y. W. ; Peng J. ; Zhai M. L. Acta Phys. -Chim. Sin. 2017, 33, 2542. |
曹朋飞; 胡杨; 张有为; 彭静; 翟茂林; 物理化学学报, 2017, 33, 2542.
doi: 10.3866/pku.whxb201706151 |
|
5 |
Wang Z. ; Wang L. Chin. J. Catal. 2018, 39, 369.
doi: 10.1016/S1872-2067(17)62998-X |
6 |
Chen J. Z. ; Wu X. J. ; Yin L. S. ; Li B. ; Hong X. ; Fan Z. X. ; Chen B. ; Xue C. ; Zhang H. Angew. Chem. -Int. Edit. 2015, 54, 1210.
doi: 10.1002/anie.201410172 |
7 |
Jang J. S. ; Joshi U. A. ; Lee J. S. J. Phys. Chem. C 2007, 111, 13280.
doi: 10.1021/jp072683b |
8 |
Jing D. W. ; Guo L. J. J. Phys. Chem. B 2006, 110, 11139.
doi: 10.1021/jp060905k |
9 |
Yuan Y. J. ; Li Z. ; Wu S. ; Chen D. ; Yang L. X. ; Cao D. ; Tu W. G. ; Yu Z. T. ; Zou Z. G. Chem. Eng. J. 2018, 350, 335.
doi: 10.1016/j.cej.2018.05.172 |
10 |
Li L. ; Wu J. ; Liu B. ; Liu X. ; Li C. ; Gong Y. ; Huang Y. ; Pan L. Catal. Today 2018, 315, 110.
doi: 10.1016/j.cattod.2018.03.072 |
11 |
Low J. ; Dai B. ; Tong T. ; Jiang C. ; Yu J. Adv. Mater. 2019, 31, 1802981.
doi: 10.1002/adma.201802981 |
12 |
Wang P. ; Yi X. ; Lu Y. ; Yu H. ; Yu J. J. Colloid Interface Sci. 2018, 532, 272.
doi: 10.1016/j.jcis.2018.07.139 |
13 |
Zhao D. ; Chen C. ; Yu C. ; Ma W. ; Zhao J. J. Phys. Chem. C 2009, 113, 13160.
doi: 10.1021/jp9002774 |
14 |
Ai Z. Z. ; Zhao G. ; Zhong Y. Y. ; Shao Y. L. ; Huang B. B. ; Wu Y. Z. ; Hao X. P. Appl. Catal. B-Environ. 2018, 221, 179.
doi: 10.1016/j.apcatb.2017.09.002 |
15 |
Li K. ; Han M. ; Chen R. ; Li S. L. ; Xie S. L. ; Mao C. ; Bu X. ; Cao X. L. ; Dong L. Z. ; Feng P. ; et al Adv. Mater. 2016, 28, 8906.
doi: 10.1002/adma.201601047 |
16 |
Zhao N. ; Peng J. ; Liu G. ; Zhang Y. ; Lei W. ; Yin Z. ; Li J. ; Zhai M. J. Mater. Chem. A 2018, 6, 18458.
doi: 10.1039/C8TA03414A |
17 |
Wang J. ; Cui W. ; Chen R. ; He Y. ; Yuan C. ; Sheng J. ; Li J. ; Zhang Y. ; Dong F. ; Sun Y. Catal. Sci. Technol. 2020, 10, 529.
doi: 10.1039/C9CY02048A |
18 |
Chen S. ; Qi Y. ; Li C. ; Domen K. ; Zhang F. Joule 2018, 2, 2260.
doi: 10.1016/j.joule.2018.07.030 |
19 |
Liao Y. ; Cao S. W. ; Yuan Y. ; Gu Q. ; Zhang Z. ; Xue C. Chem. -A Eur. J. 2014, 20, 10220.
doi: 10.1002/chem.201403321 |
20 |
Zhong W. ; Wu X. ; Wang P. ; Fan J. ; Yu H. ACS Sustain. Chem. Eng. 2020, 8, 543.
doi: 10.1021/acssuschemeng.9b06046 |
21 |
Meng X. ; Ouyang S. ; Kako T. ; Li P. ; Yu Q. ; Wang T. ; Ye J. Chem. Commun. 2014, 50, 11517.
doi: 10.1039/C4CC04848B |
22 |
Zhang H. ; Yang Z. ; Shangguan L. ; Song X. ; Sun J. ; Lei W. Nanotechnology 2020, 31, 145716.
doi: 10.1088/1361-6528/ab6750 |
23 |
Zhao F. ; Feng Y. ; Wang Y. ; Zhang X. ; Liang X. ; Li Z. ; Zhang F. ; Wang T. ; Gong J. ; Feng W. Nat. Commun. 2020, 11, 1443.
doi: 10.1038/s41467-020-15262-4 |
24 |
Muruganandam S. ; Anbalagan G. ; Murugadoss G. Optik 2017, 131, 826.
doi: 10.1016/j.ijleo.2016.12.001 |
25 |
Aisida S. O. ; Ahmad I. ; Ezema F. I. Phys. B: Conden. Matter 2020, 579, 411907.
doi: 10.1016/j.physb.2019.411907 |
26 |
Senthil S. ; Srinivasan S. ; Thangeeswari T. ; Ratchagar V. J. Mater. Sci.-Mater. Electron. 2019, 30, 19841.
doi: 10.1007/s10854-019-02351-4 |
27 |
Bibi R. ; Huang H. ; Kalulu M. ; Shen Q. ; Wei L. ; Oderinde O. ; Li N. ; Zhou J. ACS Sustain. Chem. Eng. 2019, 7, 4868.
doi: 10.1021/acssuschemeng.8b05352 |
28 |
Kour G. ; Gupta M. Dalton Trans. 2017, 46, 7039.
doi: 10.1039/C7DT00822H |
29 |
Huang P. ; Jiang Q. ; Yu P. ; Yang L. ; Mao L. ACS Appl. Mater. Interfaces 2013, 5, 5239.
doi: 10.1021/am401082n |
30 |
Kumar D. P. ; Hong S. ; Reddy D. A. ; Kim T. K. J. Mater. Chem. A 2016, 4, 18551.
doi: 10.1039/C6TA08628D |
31 |
Xiong J. ; Liu Y. ; Wang D. ; Liang S. ; Wu W. ; Wu L. J. Mater. Chem. A 2015, 3, 12631.
doi: 10.1039/C5TA02438B |
32 |
Li Y. H. ; Zhang F. ; Chen Y. ; Li J. Y. ; Xu Y. J. Green Chem. 2020, 22, 163.
doi: 10.1039/C9GC03332G |
33 |
Abdelghany A. M. ; Abdelrazek E. M. ; Rashad D. S. Spectrochim. Acta A 2014, 130, 302.
doi: 10.1016/j.saa.2014.04.049 |
34 |
Guo Y. ; Shi W. ; Zhu Y. ; Xu Y. ; Cui F. Appl. Catal. B-Environ. 2020, 262, 118262.
doi: 10.1016/j.apcatb.2019.118262 |
35 |
Waehayee A. ; Watthaisong P. ; Wannapaiboon S. ; Chanlek N. ; Nakajima H. ; Wittayakun J. ; Suthirakun S. ; Siritanon T. Catal. Sci. Technol. 2020, 10, 978.
doi: 10.1039/C9CY01782H |
36 |
Buxton G. V. ; Greenstock C. L. ; Helman W. P. ; Ross A. B. J. Phys. Chem. Ref. Data 1988, 17, 513.
doi: 10.1063/1.555805 |
37 |
Rossetti R. ; Nakahara S. ; Brus L. E. J. Chem. Phys. 1983, 79, 1086.
doi: 10.1063/1.445834 |
38 |
Zhang L. ; Cheng Z. Q. ; Wang D. F. ; Li J. F. Mater. Lett. 2015, 158, 439.
doi: 10.1016/j.matlet.2015.06.042 |
39 |
Chava R. K. ; Son N. ; Kim Y. S. ; Kang M. Nanomaterials 2020, 10, 619.
doi: 10.3390/nano10040619 |
40 |
Wang L. ; Gao Z. ; Li Y. ; She H. ; Huang J. ; Yu B. ; Wang Q. Appl. Surf. Sci. 2019, 492, 598.
doi: 10.1016/j.apsusc.2019.06.222 |
41 |
Jiang Z. ; Zhang X. ; Yang G. ; Yuan Z. ; Ji X. ; Kong F. ; Huang B. ; Dionysiou D. D. ; Chen J. Chem. Eng. J. 2019, 373, 814.
doi: 10.1016/j.cej.2019.05.112 |
42 |
Sun Q. ; Wang N. ; Yu J. ; Yu J. C. Adv. Mater. 2018, 30, 1804368.
doi: 10.1002/adma.201804368 |
43 |
Wu Y. ; Wang H. ; Tu W. ; Wu S. ; Liu Y. ; Tan Y. Z. ; Luo H. ; Yuan X. ; Chew J. W. Appl. Catal. B-Environ. 2018, 229, 181.
doi: 10.1016/j.apcatb.2018.02.029 |
44 |
Ruan D. ; Fujitsuka M. ; Majima T. Appl. Catal. B-Environ. 2020, 264, 118541.
doi: 10.1016/j.apcatb.2019.118541 |
45 |
Xing P. ; Chen Z. ; Chen P. ; Lin H. ; Zhao L. ; Wu Y. ; He Y. J. Colloid Interface Sci. 2019, 552, 622.
doi: 10.1016/j.jcis.2019.05.098 |
46 |
Qin Y. ; Li H. ; Lu J. ; Meng F. ; Ma C. ; Yan Y. ; Meng M. Chem. Eng. J. 2020, 384, 123275.
doi: 10.1016/j.cej.2019.123275 |
47 |
Moniruddin M. ; Oppong E. ; Stewart D. ; McCleese C. ; Roy A. ; Warzywoda J. ; Nuraje N. Inorg. Chem. 2019, 58, 12325.
doi: 10.1021/acs.inorgchem.9b01854 |
[1] | Lijun Zhang, Youlin Wu, Noritatsu Tsubaki, Zhiliang Jin. 2D/3D S-Scheme Heterojunction Interface of CeO2-Cu2O Promotes Ordered Charge Transfer for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302051-. |
[2] | Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110014-. |
[3] | Peng Zhang, Jiquan Wang, Yuan Li, Lisha Jiang, Zhuangzhuang Wang, Gaoke Zhang. Non-Noble-Metallic Cocatalyst Ni2P Nanoparticles Modified Graphite-Like Carbonitride with Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009102-. |
[4] | Zihui Mei, Guohong Wang, Suding Yan, Juan Wang. Rapid Microwave-Assisted Synthesis of 2D/1D ZnIn2S4/TiO2 S-Scheme Heterojunction for Catalyzing Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009097-. |
[5] | Zhimin Jiang, Qing Chen, Qiaoqing Zheng, Rongchen Shen, Peng Zhang, Xin Li. Constructing 1D/2D Schottky-Based Heterojunctions between Mn0.2Cd0.8S Nanorods and Ti3C2 Nanosheets for Boosted Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010059-. |
[6] | Jin Wu, Jing Liu, Wu Xia, Ying-Yi Ren, Feng Wang. Advances on Photocatalytic CO2 Reduction Based on CdS and CdSe Nano-Semiconductors [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2008043-. |
[7] | Jun Ji, Xin Liu, Hao Huang, Haoran Jiang, Mingjun Duan, Benyu Liu, Peng Cui, Yingfeng Li, Meicheng Li. Recent Progress on Perovskite Homojunction Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008095-. |
[8] | Dan Cao,Hua An,Xiaoqing Yan,Yuxin Zhao,Guidong Yang,Hui Mei. Fabrication of Z-Scheme Heterojunction of SiC/Pt/Cds Nanorod for Efficient Photocatalytic H2 Evolution [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1901051-. |
[9] | Ruolan Zhang,Chao Wang,Hao Chen,Heng Zhao,Jing Liu,Yu Li,Baolian Su. Cadmium Sulfide Inverse Opal for Photocatalytic Hydrogen Production [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1803014-. |
[10] | Zhiming LIU, Guoliang LIU, Xinlin HONG. Influence of Surface Defects and Palladium Deposition on the Activity of CdS Nanocrystals for Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2019, 35(2): 215-222. |
[11] | Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity [J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601. |
[12] | Li-Juan WANG,Qi LI,Yan-Zhong HAO,Shi-Gang SHEN,Dong-Sheng XU. Improvement of Quantum Dot Coverage of CdS/CdSe/TiO2 Hierarchical Hollow Sphere Photoanodes [J]. Acta Phys. -Chim. Sin., 2016, 32(4): 983-989. |
[13] | Li ZHOU,Huan-Huan LIU,Yu-Lin YANG,Liang-Sheng QIANG. Preparation and Performance of a SILAR TiO2/CdS/Co-Pi Water Oxidation Photoanode [J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2731-2736. |
[14] | LI Hui, LIU Xiang-Xin, ZHANG Yu-Feng, DU Zhong-Ming, YANG Biao, HAN Jun-Feng, BESLAND Marie-Paule. Synthesis of CdS with Large Band Gap Values by a Simple Route at Room Temperature [J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1338-1344. |
[15] | ZHANG Jing-Bo, LI Pan, YANG Hui, ZHAO Fei-Yan, TANG Guang-Shi, SUN Li-Na, LIN Yuan. Preparation of a Highly Efficient PbS Electrode and Its Application in Quantum Dots-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1495-1500. |
|