Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (4): 2008095.doi: 10.3866/PKU.WHXB202008095
Special Issue: Metal Halide Perovskite Optoelectronic Material and Device
• PERSPECTIVE • Previous Articles Next Articles
Jun Ji, Xin Liu, Hao Huang, Haoran Jiang, Mingjun Duan, Benyu Liu, Peng Cui, Yingfeng Li, Meicheng Li()
Received:
2020-08-31
Accepted:
2020-09-25
Published:
2020-10-16
Contact:
Meicheng Li
E-mail:mcli@ncepu.edu.cn
About author:
Meicheng Li, Email: mcli@ncepu.edu.cnSupported by:
Jun Ji, Xin Liu, Hao Huang, Haoran Jiang, Mingjun Duan, Benyu Liu, Peng Cui, Yingfeng Li, Meicheng Li. Recent Progress on Perovskite Homojunction Solar Cells[J]. Acta Phys. -Chim. Sin. 2021, 37(4), 2008095. doi: 10.3866/PKU.WHXB202008095
Fig 1
Self-doping mechanism of perovskite materials. (a) Valence spectra of CH3NH3PbI3 films formed by one-step solution method with different annealing temperatures and the energetic levels of the corresponding perovskite films; (b) annealing temperatures dependent carrier concentration and carrier mobility in perovskite films (circle) and the spiro-MeOTAD film (square) by Hall measurement; (c) photoemission spectra of perovskite samples annealed at 100 ℃ for 10 and 100 min. UPS secondary electron cut-off spectra and XPS valence spectra; (d) composition dependent carrier concentration (circle) and carrier mobility (square) in perovskite films; (e) the formation energies of intrinsic point defects in CH3NH3PbI3; (f) schematic conductivity type conversions in perovskite films by excess CH3NH3I (left side) or excess PbI2 (right side). Possible point defects in perovskite films caused by composition variation were illustrated correspondingly. (a, b) Adapted from Wiley publisher24. (c) Adapted from Royal Society of Chemistry publisher 31. (d, f) Adapted from AIP publishing publisher 23. (e) Adapted from AIP publishing publisher 34. "
Fig 2
Exogenous doping mechanism of perovskite materials. (a) Calculated formations energies of defects formed by group-IA and-IB elements as functions as the Fermi levels at I-rich/Pb-poor and I-poor/Pb-rich conditions. The vertical dotted lines indicate the Fermi level pinning, the Fermi levels are referenced to the VBM; (b) calculated total DOS and partial DOS for acceptors of OI, SI, SeI, and TeI; (c) the Seebeck effects for organo-metal halide perovskite films based on lateral Au/perovskite/Au device design (Single: CH3NH3PbI3, Mixed: CH3NH3PbIxCl3-x); (d) illustration of energy band bending in the perovskite layer with PEIE film. (a, b) Adapted from ACS Publications publisher 35. (c) Adapted from Elsevier publisher 37. (d) Adapted from Elsevier publisher 27. "
Fig 3
Perovskite p-n homojunction. (a) Schematic diagram of p-type and n-type perovskite energy bands; (b) electric field structure and energy band diagram of perovskite homojunction; (c) diagram of carrier transport in perovskite homojunction structure; (d) AFM topography images of the perovskite solar cells cross section (Vb = 0). The dashed blue lines are used to identify the layers in the device; (e) the corresponding KPFM images. The color scale bars of the KPFM indicate the relative scales of the surface potential; (f) potential profiles of the device under the various bias voltages; (g) electric field profiles under the various bias voltages. (c-g) Adapted from Springer Nature publisher 30."
1 | https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200803.pdf (accessed Aug 9, 2020). |
2 |
Giordano F. ; Abate A. ; Correa Baena J. P. ; Saliba M. ; Matsui T. ; Im S. H. ; Zakeeruddin S. M. ; Nazeeruddin M. K. ; Hagfeldt A. ; Graetzel M. Nat. Commun. 2016, 7, 10379.
doi: 10.1038/ncomms10379 |
3 |
Wei D. ; Ji J. ; Song D. ; Li M. ; Cui P. ; Li Y. ; Mbengue J. M. ; Zhou W. ; Ning Z. ; Park N. G. J. Mater. Chem. A 2017, 5, 1406.
doi: 10.1039/C6TA10418E |
4 |
Jiang Q. ; Zhang L. ; Wang H. ; Yang X. ; Meng J. ; Liu H. ; Yin Z. ; Wu J. ; Zhang X. ; You J. Nat. Energy 2016, 2, 16177.
doi: 10.1038/nenergy.2016.177 |
5 |
Huang H. ; Liu X. ; Duan M. ; Ji J. ; Jiang H. ; Liu B. ; Sajid S. ; Cui P. ; Wei D. ; Li Y. ; Li M. ACS Appl. Energy Mater. 2020, 3, 5039.
doi: 10.1021/acsaem.0c00563 |
6 |
Han J. ; Kwon H. ; Kim E. ; Kim D. W. ; Son H. J. ; Kim D. H. J. Mater. Chem. A 2020, 8, 2105.
doi: 10.1039/C9TA12750J |
7 |
Jeng J. Y. ; Chen K. C. ; Chiang T. Y. ; Lin P. Y. ; Tsai T. D. ; Chang Y. C. ; Guo T. F. ; Chen P. ; Wen T. C. ; Hsu Y. J. Adv. Mater. 2014, 26, 4107.
doi: 10.1002/adma.201306217 |
8 |
Liu B. ; Cui R. ; Huang H. ; Guo X. ; Dong J. ; Yao H. ; Li Y. ; Zhao D. ; Wang J. ; Zhang J. ; Chen Y. ; Sun B. J. Mater. Chem. A 2020, 8, 3145.
doi: 10.1039/C9TA10763K |
9 |
Liu Q. ; Fan L. ; Zhang Q. E. ; Zhou A. A. ; Wang B. ; Bai H. ; Tian Q. ; Fan B. ; Zhang T. ChemSusChem 2017, 10, 3098.
doi: 10.1002/cssc.201700872 |
10 |
Yoo J. J. ; Wieghold S. ; Sponseller M. C. ; Chua M. R. ; Bertram S. N. ; Hartono N. T. P. ; Tresback J. S. ; Hansen E. C. ; Correa-Baena J.P. ; Bulović V. ; et al Energ. Environ. Sci. 2019, 12, 2192.
doi: 10.1039/C9EE00751B |
11 |
Kim Y. ; Jung E. H. ; Kim G. ; Kim D. ; Kim B. J. ; Seo J. Adv. Energy Mater. 2018, 8, 1801668.
doi: 10.1002/aenm.201801668 |
12 |
Zhao X. ; Chen J. ; Park N. G. Sol. RRL 2019, 3, 1800339.
doi: 10.1002/solr.201800339 |
13 |
Leijtens T. ; Eperon G. E. ; Pathak S. ; Abate A. ; Lee M. M. ; Snaith H. J. Nat. Commun. 2013, 4, 2885.
doi: 10.1038/ncomms3885 |
14 |
Ji J. ; Liu X. ; Jiang H. ; Duan M. ; Liu B. ; Huang H. ; Wei D. ; Li Y. ; Li M. iScience 2020, 23, 101013.
doi: 10.1016/j.isci.2020.101013 |
15 |
Divitini G. ; Cacovich S. ; Matteocci F. ; Cinà L. ; Di Carlo A. ; Ducati C. Nat. Energy 2016, 1, 15012.
doi: 10.1038/nenergy.2015.12 |
16 |
Luo J. ; Jia C. ; Wan Z. ; Han F. ; Zhao B. ; Wang R. J. Power Sources 2017, 342, 886.
doi: 10.1016/j.jpowsour.2017.01.010 |
17 | Lu Y. ; Ge Y. ; Sui M. L. Acta Phys. -Chim. Sin. 2021, 37, 2007088. |
卢岳; 葛杨; 隋曼龄. 物理化学学报, 2021, 37, 2007088.
doi: 10.3866/PKU.WHXB202007088 |
|
18 | Ge Y. ; Mu X. L. ; Lu Y. ; Sui M. L. Acta Phys. -Chim. Sin. 2020, 36, 1905039. |
葛杨; 牟许霖; 卢岳; 隋曼龄. 物理化学学报, 2020, 36, 1905039.
doi: 10.3866/PKU.WHXB201905039 |
|
19 |
Poorkazem K. ; Liu D. ; Kelly T. L. J. Mater. Chem. A 2015, 3, 9241.
doi: 10.1039/C5TA00084J |
20 |
Ahn S. M. ; Jung E. D. ; Kim S. H. ; Kim H. ; Lee S. ; Song M. H. ; Kim J. Y. Nano Lett. 2019, 19, 3707.
doi: 10.1021/acs.nanolett.9b00796 |
21 |
You P. ; Liu Z. ; Tai Q. ; Liu S. ; Yan F. Adv. Mater. 2015, 27, 3632.
doi: 10.1002/adma.201501145 |
22 |
Ou X. L. ; Feng J. ; Xu M. ; Sun H. B. Opt. Lett. 2017, 42, 1958.
doi: 10.1364/OL.42.001958 |
23 |
Wang Q. ; Shao Y. ; Xie H. ; Lyu L. ; Liu X. ; Gao Y. ; Huang J. Appl. Phys. Lett. 2014, 105, 163508.
doi: 10.1063/1.4899051 |
24 |
Cui P. ; Wei D. ; Ji J. ; Song D. ; Li Y. ; Liu X. ; Huang J. ; Wang T. ; You J. ; Li M. Sol. RRL 2017, 1, 1600027.
doi: 10.1002/solr.201600027 |
25 |
Semonin O. E. ; Elbaz G. A. ; Straus D. B. ; Hull T. D. ; Paley D. W. ; Van der Zande A. M. ; Hone J. C. ; Kymissis I. ; Kagan C. R. ; Roy X. ; Owen J. S. J. Phys. Chem. Lett. 2017, 8, 6092.
doi: 10.1021/acs.jpclett.7b03064 |
26 |
Shi T. ; Yin W. J. ; Hong F. ; Zhu K. ; Yan Y. Appl. Phys. Lett. 2015, 106, 103902.
doi: 10.1063/1.4914544 |
27 |
Song S. ; Moon B. J. ; Hörantner M. T. ; Lim J. ; Kang G. ; Park M. ; Kim J. Y. ; Snaith H. J. ; Park T. Nano Energy 2016, 28, 269.
doi: 10.1016/j.nanoen.2016.06.046 |
28 |
Bin Z. ; Li J. ; Wang L. ; Duan L. Energ Environ. Sci. 2016, 9, 3424.
doi: 10.1039/C6EE01987K |
29 |
Zhang J. ; Shang M. H. ; Wang P. ; Huang X. ; Xu J. ; Hu Z. ; Zhu Y. ; Han L. ACS Energy Lett. 2016, 1, 535.
doi: 10.1021/acsenergylett.6b00241 |
30 |
Cui P. ; Wei D. ; Ji J. ; Huang H. ; Jia E. ; Dou S. ; Wang T. ; Wang W. ; Li M. Nat. Energy 2019, 4, 150.
doi: 10.1038/s41560-018-0324-8 |
31 |
Ralaiarisoa M. ; Busby Y. ; Frisch J. ; Salzmann I. ; Pireaux J. J. ; Koch N. Phys. Chem. Chem. Phys. 2017, 19, 828.
doi: 10.1039/C6CP06347K |
32 |
Frolova L. A. ; Dremova N. N. ; Troshin P. A. Chem. Commun. 2015, 51, 14917.
doi: 10.1039/C5CC05205J |
33 |
Naikaew A. ; Prajongtat P. ; Lux-Steiner M. C. ; Arunchaiya M. ; Dittrich T. Appl. Phys. Lett. 2015, 106, 232104.
doi: 10.1063/1.4922554 |
34 |
Yin W. J. ; Shi T. ; Yan Y. Appl. Phys. Lett. 2014, 104, 063903.
doi: 10.1063/1.4864778 |
35 |
Shi T. ; Yin W. J. ; Yan Y. J. Phys. Chem. C 2014, 118, 25350.
doi: 10.1021/jp508328u |
36 |
Stoumpos C. C. ; Malliakas C. D. ; Kanatzidis M. G. Inorg. Chem. 2013, 52, 9019.
doi: 10.1021/ic401215x |
37 |
Liu Q. ; Hsiao Y. C. ; Ahmadi M. ; Wu T. ; Liu L. ; Haacke S. ; Wang H. ; Hu B. Org. Electron. 2016, 35, 216.
doi: 10.1016/j.orgel.2016.05.025 |
38 | Xiong S. ; Zhu M. Solar cell foundation and application 2nd Ed. Science Press: Beijing, 2009, pp. 43- 132. |
熊绍珍; 朱美芳. 太阳能电池基础与应用, 第2版 北京: 科学出版社, 2009, 43- 132. |
[1] | Muhammad Faizan, Guoqi Zhao, Tianxu Zhang, Xiaoyu Wang, Xin He, Lijun Zhang. Elastic and Thermoelectric Properties of Vacancy Ordered Double Perovskites A2BX6: A DFT Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303004-. |
[2] | Rong Hu, Liyun Wei, Jinglin Xian, Guangyu Fang, Zhiao Wu, Miao Fan, Jiayue Guo, Qingxiang Li, Kaisi Liu, Huiyu Jiang, Weilin Xu, Jun Wan, Yonggang Yao. Microwave Shock Process for Rapid Synthesis of 2D Porous La0.2Sr0.8CoO3 Perovskite as an Efficient Oxygen Evolution Reaction Catalyst [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212025-0. |
[3] | Qiuju Liang, Yinxia Chang, Chaowei Liang, Haolei Zhu, Zibin Guo, Jiangang Liu. Application of Crystallization Kinetics Strategy in Morphology Control of Solar Cells based on Nonfullerene Blends [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212006-0. |
[4] | Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211025-0. |
[5] | Mingxu Zhang, Qisen Zhou, Xinyi Mei, Jingxuan Chen, Junming Qiu, Xiuzhi Li, Shuang Li, Mubing Yu, Chaochao Qin, Xiaoliang Zhang. Colloidal Quantum Dot Solids with a Diminished Epitaxial PbI2 Matrix for Efficient Infrared Solar Cells [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210002-0. |
[6] | Yongtao Wen, Jing Li, Xiaofeng Gao, Congcong Tian, Hao Zhu, Guomu Yu, Xiaoli Zhang, Hyesung Park, Fuzhi Huang. Two-Step Sequential Blade-Coating Large-Area FA-Based Perovskite Thin Film via a Controlled PbI2 Microstructure [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203048-0. |
[7] | Tao Zhang, Simin Gong, Ping Chen, Qi Chen, Liwei Chen. Incorporation of a Polyfluorinated Acrylate Additive for High-Performance Quasi-2D Perovskite Light-Emitting Diodes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301024-. |
[8] | Shuxia Ren, Zheng Yang, Shuailling An, Jie Meng, Xiaomin Liu, Jinjin Zhao. High-Efficiency Photoelectric Regulation of Resistive Switching Memory in Perovskite Quantum Dots [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301033-. |
[9] | Bihao Zhuang, Zicong Jin, Dehua Tian, Suiyi Zhu, Linqian Zeng, Jiandong Fan, Zaizhu Lou, Wenzhe Li. Halogen Regulation for Enhanced Luminescence in Emerging (4-HBA)SbX5∙H2O Perovskite-Like Single Crystals [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2209007-0. |
[10] | Yue Lu, Yang Ge, Manling Sui. Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007088-. |
[11] | Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005007-. |
[12] | Wusong Zha, Lianping Zhang, Long Wen, Jiachen Kang, Qun Luo, Qin Chen, Shangfeng Yang, Chang-Qi Ma. Controllable Formation of PbI2 and PbI2(DMSO) Nano Domains in Perovskite Films through Precursor Solvent Engineering [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003022-. |
[13] | Xiaoyun Xu, Hongbo Wu, Shijie Liang, Zheng Tang, Mengyang Li, Jing Wang, Xiang Wang, Jin Wen, Erjun Zhou, Weiwei Li, Zaifei Ma. Quantum Efficiency and Voltage Losses in P3HT: Non-fullerene Solar Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201039-. |
[14] | Yan Li, Xingsheng Hu, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009022-. |
[15] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
|