Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (9): 2204059.doi: 10.3866/PKU.WHXB202204059
Special Issue: Carbonene Fiber and Smart Textile
• ARTICLE • Previous Articles
Wenqian He1, Ya Di2, Nan Jiang2, Zunfeng Liu1,*(), Yongsheng Chen1,*()
Received:
2022-04-30
Accepted:
2022-06-15
Published:
2022-06-22
Contact:
Zunfeng Liu,Yongsheng Chen
E-mail:liuzunfeng@nankai.edu.cn;yschen99@nankai.edu.cn
About author:
yschen99@nankai.edu.cn (Y.C.)Supported by:
Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk[J]. Acta Phys. -Chim. Sin. 2022, 38(9), 2204059. doi: 10.3866/PKU.WHXB202204059
Fig 2
Rheology tests of the polyacrylic/vinyl-functionalised silica nanoparticles (PAA-SNV) hydrogel. (a) Strain oscillatory rheology and (c) step-strain (between 1% and 1000%) oscillatory rheology of the PAA-SNV hydrogel at an angular frequency of 10 rad·s?1. (b) Frequency-dependent rheology and (d) the shear viscosity of the PAA-SNV hydrogel with different SNV contents at 1% oscillatory strain."
Fig 3
The hierarchical structure and mechanical properties of the PAA/SNV gel fiber. (a) A photograph showing multiple gel fibers can be drawn-spun simultaneously. (b, c) The optical (b) and SEM (c) images of the gel fiber. (d) The diameter of the gel fiber a function of the depth of the iron rod dipping into the gel. (e, f) Stress?strain curves a function of the SNV contents (e) and AA contents (f) for the gel fiber."
Fig 4
Modulating the structure and mechanical properties of the gel fibers by adding graphene oxide (GO) seeds. (a) Schematic illustration of modulating nano-assembly structure by adding seeds. (b) The AFM image of the GO and (c) a sectional profile. (d) FTIR spectra of the gel fiber containing 0% and 0.01% GO. (e–g) The SEM images of fiber surface (e) and fractured cross-section (f), and polarized optical images (g) of the gel fibers for different seed contents."
Fig 5
Mechanical test for gel fibers containing GO seeds. (a) Breaking stress, breaking strain, and toughness of the gel fibers for different GO contents (a), drying time (b), stretch rate (c) and relative humidity (d). (e) Loading-unloading curves. (f) Stress–strain curves at relative humidity of 10% at 25 ℃ for the as-prepared hydrogel fibers and after super-contraction and for different time."
Fig 6
Impact reduction of the gel fibers. (a) Images showing a 300-ply of 10-μm-diameter gel yarn lifting a 3-kg weight. (b) A 12-μm-diameter, 12-cm-long gel fiber was placed at an angle of 30°. The 6.7-g-weight object was captured by gel fiber with impact reduction and not bounced back. The fiber was slowly elongated by 53%."
1 |
Ling S. ; Qin Z. ; Li C. ; Huang W. ; Kaplan D. L. ; Buehler M. J. Nat. Commun. 2017, 8, 1.
doi: 10.1038/s41467-017-00613-5 |
2 |
Omenetto F. G. ; Kaplan D. L. Science 2010, 329, 528.
doi: 10.1126/science.1188936 |
3 |
Vollrath F. ; Knight D. P. Nature 2001, 410, 541.
doi: 10.1038/35069000 |
4 |
Rising A. ; Johansson J. Nat. Chem. Biol. 2015, 11, 309.
doi: 10.1038/nchembio.1789 |
5 |
Yarger J. L. ; Cherry B. R. ; Van Der Vaart A. Nat. Rev. Mater. 2018, 3, 1.
doi: 10.1038/natrevmats.2018.8 |
6 |
Yoshioka T. ; Tsubota T. ; Tashiro K. ; Jouraku A. ; Kameda T. Nat. Commun. 2019, 10, 1.
doi: 10.1038/s41467-019-09350-3 |
7 |
Du N. ; Yang Z. ; Liu X. Y. ; Li Y. ; Xu H. Y. Adv. Funct. Mater. 2011, 21, 772.
doi: 10.1002/adfm.201001397 |
8 |
Eisoldt L. ; Smith A. ; Scheibel T. Mater. Today 2011, 14, 80.
doi: 10.1016/S1369-7021(11)70057-8 |
9 |
Lefèvre T. ; Auger M. Int. Mater. Rev. 2016, 61, 127.
doi: 10.1080/09506608.2016.1148894 |
10 |
Lin T.-Y. ; Masunaga H. ; Sato R. ; Malay A. D. ; Toyooka K. ; Hikima T. ; Numata K. Biomacromolecules 2017, 18, 1350.
doi: 10.1021/acs.biomac.7b00086 |
11 |
Yazawa K. ; Malay A. D. ; Masunaga H. ; Numata K. Macromol. Bioscience 2019, 19, 1800220.
doi: 10.1002/mabi.201800220 |
12 |
Gao H.-L. ; Zhao R. ; Cui C. ; Zhu Y.-B. ; Chen S.-M. ; Pan Z. ; Meng Y.-F. ; Wen S.-M. ; Liu C. ; Wu H.-A. Natl. Sci. Rev. 2020, 7, 73.
doi: 10.1093/nsr/nwz077 |
13 |
Mittal N. ; Jansson R. ; Widhe M. ; Benselfelt T. ; Håkansson K. M. ; Lundell F. ; Hedhammar M. ; Söderberg L. D. ACS Nano 2017, 11, 5148.
doi: 10.1021/acsnano.7b02305 |
14 |
Mohammadi P. ; Aranko A. S. ; Landowski C. P. ; Ikkala O. ; Jaudzems K. ; Wagermaier W. ; Linder M. B. Sci. Adv. 2019, 5, eaaw2541.
doi: 10.1126/sciadv.aaw2541 |
15 |
Yu Y. ; He Y. ; Mu Z. ; Zhao Y. ; Kong K. ; Liu Z. ; Tang R. Adv. Funct. Mater. 2020, 30, 1908556.
doi: 10.1002/adfm.201908556 |
16 |
Dou Y. ; Wang Z.-P. ; He W. ; Jia T. ; Liu Z. ; Sun P. ; Wen K. ; Gao E. ; Zhou X. ; Hu X. Nat. Commun. 2019, 10, 1.
doi: 10.1038/s41467-019-09234-6 |
17 |
Wu Y. ; Shah D. U. ; Liu C. ; Yu Z. ; Liu J. ; Ren X. ; Rowland M. J. ; Abell C. ; Ramage M. H. ; Scherman O. A. Proc. Nat. Acad. Sci. U. S. A. 2017, 114, 8163.
doi: 10.1073/pnas.1705380114 |
18 |
Deptula A. ; Wade M. ; Rogers S. A. ; Espinosa‐Marzal R. M. Adv. Funct. Mater. 2022, 32, 2111414.
doi: 10.1002/adfm.202111414 |
19 |
Heidebrecht A. ; Eisoldt L. ; Diehl J. ; Schmidt A. ; Geffers M. ; Lang G. ; Scheibel T. Adv. Mater. 2015, 27, 2189.
doi: 10.1002/adma.201404234 |
20 |
Li J. ; Zhu Y. ; Yu H. ; Dai B. ; Jun Y.-S. ; Zhang F. ACS Nano 2021, 15, 11843.
doi: 10.1021/acsnano.1c02944 |
21 |
Li Y. ; Li J. ; Sun J. ; He H. ; Li B. ; Ma C. ; Liu K. ; Zhang H. Angew. Chem. Int. Ed. 2020, 132, 8225.
doi: 10.1002/anie.202102158 |
22 | Kabir, M. H.; Ahmed, K.; Gong, J.; Furukawa, H. The Effect of Cross-Linker Concentration in the Physical Properties of Shape Memory Gel. In: Proceedings of SPIE, 2015, 9432, 94320Q. Conference on Behavior and Mechanics of Multifunctional Materials and Composites, San Diego, CA, MAR 09–11, 2015. doi: 10.1117/12.2084181 |
23 |
Andersson M. ; Jia Q. ; Abella A. ; Lee X.-Y. ; Landreh M. ; Purhonen P. ; Hebert H. ; Tenje M. ; Robinson C. V. ; Meng Q. Nat. Chem. Biol. 2017, 13, 262.
doi: 10.1038/NCHEMBIO.2269 |
24 |
Wei P. ; Hou K. ; Chen T. ; Chen G. ; Mugaanire I. T. ; Zhu M. Mater. Horiz. 2020, 7, 811.
doi: 10.1039/C9MH01390C |
25 |
Jin Y. ; Zhang Y. ; Hang Y. ; Shao H. ; Hu X. J. Mater. Res. 2013, 28, 2897.
doi: 10.1557/jmr.2013.276 |
26 |
Sun M. ; Zhang Y. ; Zhao Y. ; Shao H. ; Hu X. J. Mater. Chem. 2012, 22, 18372.
doi: 10.1039/C2JM32576D |
27 |
Yue X. ; Zhang F. ; Wu H. ; Ming J. ; Fan Z. ; Zuo B. Mater. Lett. 2014, 128, 175.
doi: 10.1016/j.matlet.2014.04.116 |
28 |
Liao X. ; Dulle M. ; e Silva J. M. d. S. ; Wehrspohn R. B. ; Agarwal S. ; Förster S. ; Hou H. ; Smith P. ; Greiner A. Science 2019, 366, 1376.
doi: 10.1126/science.aay903 |
29 |
Xue J. ; Wu T. ; Dai Y. ; Xia Y. Chem. Rev. 2019, 119, 5298.
doi: 10.1021/acs.chemrev.8b00593 |
30 |
Kang E. ; Choi Y. Y. ; Chae S. K. ; Moon J. H. ; Chang J. Y. ; Lee S. H. Adv. Mater. 2012, 24, 4271.
doi: 10.1002/adma.201201232 |
31 |
Mittal N. ; Benselfelt T. ; Ansari F. ; Gordeyeva K. ; Roth S. V. ; Wågberg L. ; Söderberg L. D. Angew. Chem. Int. Ed. 2019, 131, 18735.
doi: 10.1002/ange.201910603 |
32 |
Tamayol A. ; Akbari M. ; Zilberman Y. ; Comotto M. ; Lesha E. ; Serex L. ; Bagherifard S. ; Chen Y. ; Fu G. ; Ameri S. K. Adv. Healthc. Mater. 2016, 5, 711.
doi: 10.1002/adhm.201670027 |
33 |
Huang H. M. ; Li Z. ; Wang C. Solid State Phenomena 2007, 121, 579.
doi: 10.4028/www.scientific.net/SSP.121-123.579 |
34 |
Lu H. ; Zhang L. ; Xing W. ; Wang H. ; Xu N. Macromol. Chem. Phys. 2005, 94, 322.
doi: 10.1039/C9TA14082D |
35 |
Hou K. ; Hu Z. ; Mugaanire I. T. ; Li C. ; Chen G. ; Zhu M. Polymer 2019, 183, 121903.
doi: 10.1016/j.polymer.2019.121903 |
36 |
Hou K. ; Wang H. ; Lin Y. ; Chen S. ; Yang S. ; Cheng Y. ; Hsiao B. S. ; Zhu M. Macromol. Rapid Commun. 2016, 37, 1795.
doi: 10.1002/marc.201600430 |
37 |
Song J. ; Chen S. ; Sun L. ; Guo Y. ; Zhang L. ; Wang S. ; Xuan H. ; Guan Q. ; You Z. Adv. Mater. 2020, 32, 1906994.
doi: 10.1002/adma.201906994 |
38 |
Chen G. ; Wang G. ; Tan X. ; Hou K. ; Meng Q. ; Zhao P. ; Wang S. ; Zhang J. ; Zhou Z. ; Chen T. Natl. Sci. Rev. 2021, 8, nwaa209.
doi: 10.1093/nsr/nwaa209 |
39 |
Duan X. ; Yu J. ; Zhu Y. ; Zheng Z. ; Liao Q. ; Xiao Y. ; Li Y. ; He Z. ; Zhao Y. ; Wang H. ACS Nano 2020, 14, 14929.
doi: 10.1021/acsnano.0c04382 |
40 |
Ju M. ; Wu B. ; Sun S. ; Wu P. Adv. Funct. Mater. 2020, 30, 1910387.
doi: 10.1002/adfm.201910387 |
41 |
Wu L. ; Li L. ; Fan M. ; Tang P. ; Yang S. ; Pan L. ; Wang H. ; Bin Y. Composites Part A: Appl. Sci. Manufacturing 2020, 138, 106050.
doi: 10.1016/j.compositesa.2020.106050 |
42 |
Bettahar F. ; Bekkar F. ; Pérez-Álvarez L. ; Ferahi M. I. ; Meghabar R. ; Vilas-Vilela J. L. ; Ruiz-Rubio L. Polymer 2021, 13, 972.
doi: 10.3390/polym13060972 |
43 |
Yang Y. ; Wang C. ; Wiener C. G. ; Hao J. ; Shatas S. ; Weiss R. ; Vogt B. D. ACS Appl. Mater. Interfaces 2016, 8, 22774.
doi: 10.1021/acsami.6b08255 |
44 |
Chen T. ; Wei P. ; Chen G. ; Liu H. ; Mugaanire I. T. ; Hou K. ; Zhu M. J. Mater. Chem. A 2021, 9, 12265.
doi: 10.1039/d1ta02422a |
45 |
An Y. ; Gao L. ; Wang T. ACS Appl. Nano Mater. 2020, 3, 5079.
doi: 10.1021/acsanm.0c00351 |
46 |
Chu C. K. ; Joseph A. J. ; Limjoco M. D. ; Yang J. ; Bose S. ; Thapa L. S. ; Langer R. ; Anderson D. G. J. Am. Chem. Soc. 2020, 142, 19715.
doi: 10.1021/jacs.0c09691 |
47 |
Zhao X. ; Chen F. ; Li Y. ; Lu H. ; Zhang N. ; Ma M. Nat. Commun. 2018, 9, 1.
doi: 10.1038/s41467-018-05904-z |
48 |
Naficy S. ; Le T. Y. L. ; Oveissi F. ; Lee A. ; Hung J. C. ; Wise S. G. ; Winlaw D. S. ; Dehghani F. Adv. Mater. Interfaces 2020, 7, 1901770.
doi: 10.1002/admi.201901770 |
49 |
Peng L. ; Liu Y. ; Huang J. ; Li J. ; Gong J. ; Ma J. Eur. Poly. J. 2018, 10, 335.
doi: 10.1016/j.eurpolymj.2018.04.019 |
50 |
Zhou M. ; Gong J. ; Ma J. e-Polymers 2019, 19, 215.
doi: 10.1515/epoly-2019-0022 |
[1] | Xiaoyu Wang, Yang Cheng, Guodong Xue, Ziqi Zhou, Mengze Zhao, Chaojie Ma, Jin Xie, Guangjie Yao, Hao Hong, Xu Zhou, Kaihui Liu, Zhongfan Liu. Giant Enhancement of Optical Second Harmonic Generation in Hollow-Core Fiber Integrated with GaSe Nanoflakes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212028-0. |
[2] | Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210014-0. |
[3] | Jie Wang, Guigao Liu, Qinbai Yun, Xichen Zhou, Xiaozhi Liu, Ye Chen, Hongfei Cheng, Yiyao Ge, Jingtao Huang, Zhaoning Hu, Bo Chen, Zhanxi Fan, Lin Gu, Hua Zhang. Epitaxial Growth of Unconventional 4H-Pd Based Alloy Nanostructures on 4H-Au Nanoribbons towards Highly Efficient Electrocatalytic Methanol Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2305034-. |
[4] | Changxiang Shao, Liangti Qu. Progress on Power Generation from Gas-Liquid Phase Transformation of Water [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306004-. |
[5] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[6] | Xiaohui Cao, Chengyi Hou, Yaogang Li, Kerui Li, Qinghong Zhang, Hongzhi Wang. MXenes-Based Functional Fibers and Their Applications in the Intelligent Wearable Field [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204058-. |
[7] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[8] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
[9] | Muqiang Jian, Yingying Zhang, Zhongfan Liu. Graphene Fibers: Preparation, Properties, and Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2007093-. |
[10] | Jian Wang, Bo Yin, Tian Gao, Xingyi Wang, Wang Li, Xingxing Hong, Zhuqing Wang, Haiyong He. Reduced Graphene Oxide Modified Few-Layer Exfoliated Graphite to Enhance the Stability of the Negative Electrode of a Graphite-Based Potassium Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012088-. |
[11] | Cheng Chang, Wei Chen, Ye Chen, Yonghua Chen, Yu Chen, Feng Ding, Chunhai Fan, Hong Jin Fan, Zhanxi Fan, Cheng Gong, Yongji Gong, Qiyuan He, Xun Hong, Sheng Hu, Weida Hu, Wei Huang, Yuan Huang, Wei Ji, Dehui Li, Lain-Jong Li, Qiang Li, Li Lin, Chongyi Ling, Minghua Liu, Nan Liu, Zhuang Liu, Kian Ping Loh, Jianmin Ma, Feng Miao, Hailin Peng, Mingfei Shao, Li Song, Shao Su, Shuo Sun, Chaoliang Tan, Zhiyong Tang, Dingsheng Wang, Huan Wang, Jinlan Wang, Xin Wang, Xinran Wang, Andrew T. S. Wee, Zhongming Wei, Yuen Wu, Zhong-Shuai Wu, Jie Xiong, Qihua Xiong, Weigao Xu, Peng Yin, Haibo Zeng, Zhiyuan Zeng, Tianyou Zhai, Han Zhang, Hui Zhang, Qichun Zhang, Tierui Zhang, Xiang Zhang, Li-Dong Zhao, Meiting Zhao, Weijie Zhao, Yunxuan Zhao, Kai-Ge Zhou, Xing Zhou, Yu Zhou, Hongwei Zhu, Hua Zhang, Zhongfan Liu. Recent Progress on Two-Dimensional Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2108017-. |
[12] | Yuan Zhou, Na Han, Yanguang Li. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 2001041-. |
[13] | Chao Zhang, Sihan Li, Chenliang Wu, Xiaoqing Li, Xinhuan Yan. Preparation and Characterization of Pt@Au/Al2O3 Core-Shell Nanoparticles for Toluene Oxidation Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(8): 1907057-. |
[14] | Dongmei Liu,Xiumei Chen,Ze Yuan,Min Lu,Lisha Yin,Xiaoji Xie,Ling Huang. Coating and Transforming the Y(OH)CO3 Shell on Upconversion Nanoparticles [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1907011-. |
[15] | Jing Miao,Ruifeng Guo,Zhihong Liu. Preparation of BaO·4B2O3·5H2O Nanomaterial and Evaluation of Its Flame Retardant Performance to PP by Thermal Decomposition Kinetics Method [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1905052-. |
|