物理化学学报 >> 2011, Vol. 27 >> Issue (05): 1261-1266.doi: 10.3866/PKU.WHXB20110512

材料物理化学 上一篇    下一篇

Fe3O4磁性纳米粒子-氧化石墨烯复合材料的可控制备及结构与性能表征

张燚1,2, 陈彪2, 杨祖培1, 张智军2   

  1. 1. 陕西师范大学化学与材料科学学院, 西安 710062;
    2. 中国科学院苏州纳米技术与纳米仿生研究所, 江苏 苏州 215123
  • 收稿日期:2011-01-03 修回日期:2011-03-09 发布日期:2011-04-28
  • 通讯作者: 杨祖培, 张智军 E-mail:yangzp@snnu.edu.cn; zjzhang2007@sinano.ac.cn
  • 基金资助:

    国家自然科学基金(20873090, 21073224)资助项目

Controlled Synthesis and Characterization of the Structure and Property of Fe3O4 Nanoparticle-Graphene Oxide Composites

ZHANG Yi1,2, CHEN Biao2, YANG Zu-Pei1, ZHANG Zhi-Jun2   

  1. 1. School of Chemistry and Materials Science, Shaanxi Normal University, Xi′an 710062, P. R. China;
    2. Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, P. R. China
  • Received:2011-01-03 Revised:2011-03-09 Published:2011-04-28
  • Contact: YANG Zu-Pei, ZHANG Zhi-Jun E-mail:yangzp@snnu.edu.cn; zjzhang2007@sinano.ac.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (20873090, 21073224).

摘要:

首先利用高温分解法制备了粒径为18 nm的Fe3O4磁性纳米粒子, 并进行羧基化修饰, 然后与聚乙烯亚胺(PEI)化学修饰的氧化石墨烯进行交联反应, 得到磁功能化的氧化石墨烯(MGO)复合材料. 研究了氧化石墨烯片上的磁性纳米粒子的可控负载及其对复合材料磁性能的影响. 利用透射电子显微镜(TEM), 原子力显微镜(AFM), X射线衍射(XRD), 傅里叶变换红外(FT-IR)光谱, 热重分析(TGA), 振荡样品磁强计(VSM)等手段对MGO复合材料的形貌, 结构和磁性能进行了表征. 结果表明, 我们发展的MGO复合材料的制备方法具有简单、可控的优点, 所制备的MGO复合材料具有较高的超顺磁性. 该类磁性氧化石墨烯复合材料有望在磁靶向药物、基因输运、磁共振造影以及磁介导的生物分离和去除环境污染物等领域获得广泛的应用.

关键词: 氧化石墨烯, Fe3O4磁性纳米粒子, 复合材料, 可控制备, 表征

Abstract:

Fe3O4 nanoparticle-graphene oxide (MGO) composites were prepared by chemically binding carboxylic acid-modified Fe3O4 nanoparticles to polyethylenimine-functionalized graphene oxide (GO). The structure, morphology, and magnetic properties of the composites were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The results show that the Fe3O4 nanoparticle content in the MGO composites can be easily controlled by changing the ratio of Fe3O4 nanoparticles to GO in the reaction mixture. The MGO composites obtained are superparamagnetic with high saturation magnetization, which can potentially be applied in magnetic targeted drug delivery, gene transport, magnetic resonance imaging, bioseparation, and magnetic guided removal of aromatic contaminants in waste water and in other fields.

Key words: Graphene oxide, Fe3O4 nanoparticle, Composite, Controlled synthesis, Characterization