物理化学学报 >> 2012, Vol. 28 >> Issue (03): 504-521.doi: 10.3866/PKU.WHXB201201091

特邀综述 上一篇    下一篇

隐藏高分子界面及生物界面分子结构的和频振动光谱研究

陈战   

  1. 密歇根大学化学系, 930 North University Ave., Ann Arbor, MI 48109, 美国
  • 收稿日期:2011-11-14 修回日期:2012-01-02 发布日期:2012-02-23
  • 通讯作者: 陈战 E-mail:zhanc@umich.edu

Molecular Structures of Buried Polymer Interfaces and Biological Interfaces Detected by Sum Frequency Generation Vibrational Spectroscopy

CHEN Zhan   

  1. Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
  • Received:2011-11-14 Revised:2012-01-02 Published:2012-02-23
  • Contact: CHEN Zhan E-mail:zhanc@umich.edu
  • Supported by:

    The project was supported by the National Science Foundation, USA (CHE 1111000), National Institute of Health, USA (GM081655), Army Research Office, USA (W911NF-11-1-0251), Defense Threat Reduction Agency, USA (HDTRA1-11-1-0019), Office of Naval Research, USA (N00014-08-1-1211), and Semiconductor Research Corporation, USA (P10419).

摘要: 界面的分子结构决定界面的性质. 为了以优化界面的结构来改进材料的性质, 原位实时地研究界面的分子结构是很重要的. 近年来和频振动光谱已发展成为一个很有效及独特的手段来研究隐藏界面的分子结构,例如液/液界面、固/液界面及固/固界面等. 这篇综述讨论了和频振动光谱在研究高分子界面及生物界面等复杂界面的分子结构上的应用. 具体说来, 本文论述了高分子表面在水里的分子结构变化, 高分子及模型粘合促进剂硅烷在界面相互作用的分子机理和隐藏的高分子/高分子及高分子/金属界面的结构. 另外, 此文还将介绍不同二级结构的多肽及几个有代表性的蛋白分子在界面的结构. 界面在诸如化学、生物、物理、材料科学及工程和纳米技术等许多领域都很重要. 发展一个独特的能原位研究隐藏界面的分子结构的技术会有力地促进这些领域的研究及跨学科研究的发展.

关键词: 高分子表面和界面, 生物界面, 多肽, 蛋白质, 粘合, 二级结构, α-螺旋, β-折叠

Abstract: Molecular structures at interfaces determine interfacial properties. In order to optimize the interfacial structures to achieve improved properties of advanced materials, it is important to characterize molecular structures of interfaces in situ in real time. Recently, a nonlinear optical spectroscopic technique, sum frequency generation (SFG) vibrational spectroscopy, has been developed into a powerful and unique tool to elucidate molecular structures of buried interfaces, including liquid/liquid, solid/liquid, and solid/solid interfaces. In this review, applications of SFG to study molecular structures of complex interfaces such as polymer interfaces and biological interfaces have been discussed. Particularly, molecular surface structural changes of various polymers in water, molecular interactions between polymers and silane model adhesion promoters at interfaces, and structures of buried polymer/polymer as well as polymer/metal interfaces have been presented. In addition, interfacial structures of peptides with varied secondary structures and several representative proteins have been introduced. Interfaces play important roles in many disciplines ranging from chemistry, biology, physics, materials science and engineering, to nanotechnology. The development of a unique technique which can probe molecular structures of complex interfaces in situ greatly impacts the research in these disciplines as well as many interdisciplinary studies.

Key words: Polymer surface and interface, Biological interface, Peptide, Protein, Adhesion, Secondary structure, Alpha-helix, Beta-sheet