物理化学学报 >> 2013, Vol. 29 >> Issue (03): 559-568.doi: 10.3866/PKU.WHXB201301082

电化学和新能源 上一篇    下一篇

考虑催化层中气液态水影响的PEMFC微观模型

陈秋香1, 张洁婧1,2, 王宇新1   

  1. 1 天津大学化工学院, 化学工程联合国家重点实验室, 天津 300072;
    2 吉林农业大学生命科学学院, 长春 130118
  • 收稿日期:2012-10-31 修回日期:2013-01-08 发布日期:2013-02-25
  • 通讯作者: 王宇新 E-mail:yxwang@tju.edu.cn
  • 基金资助:

    国家自然科学基金(20606025)资助项目

Micro-Modelling of PEMFC Taking Account of Gaseous and Liquid Water inside the Catalyst Layer

CHEN Qiu-Xiang1, ZHANG Jie-Jing1,2, WANG Yu-Xin1   

  1. 1 State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China;
    2 School of Life Sciences, Jilin Agricultural University, Changchun 130118, P. R. China
  • Received:2012-10-31 Revised:2013-01-08 Published:2013-02-25
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (20606025).

摘要:

在考虑气、液两相水影响的条件下基于微观格点催化层模型对聚合物膜燃料电池(PEMFC)性能进行了模拟. 通过氧浓度分布和反应速率分布的比较, 说明了同时考虑催化层中气、液两相水影响的必要性. 模拟分析了液态水体积分数、氧气浓度及氧还原反应速率等在阴极催化层中的分布情况和影响因素. 考察了不同程度‘水淹’情况下的电池性能以及催化层孔隙率对水传递和电池性能的影响. 结果显示, 催化层中‘水淹’程度对电池性能有显著影响. 催化层中较大的孔隙率便于其中水的排出, 从而有利于提高电池性能.

关键词: 催化层, 质子交换膜燃料电池, 格点模型, 液态水传递, 液态水饱和度

Abstract:

The performance of proton exchange membrane fuel cell (PEMFC) was simulated with a microstructure lattice model of the catalyst layer, including the effect of liquid and gaseous water. Comparisons of simulations where liquid water was and was not factored in were carried out, demonstrating the necessity of including liquid and gaseous water effects in the catalyst microstructure. The distribution of the degree of liquid water saturation, oxygen concentration, and rate of oxygen reduction with catalyst layer thickness were calculated, and factors affecting these distributions were investigated. Water‘flooding’in the catalyst layer had a significant influence on PEMFC performance. Higher catalyst layer porosity facilitated water drainage and was beneficial to PEMFC performance.

Key words: Catalyst layer, Proton exchange membrane fuel cell, Lattice model, Liquid water transport, Liquid water saturation