物理化学学报 >> 2019, Vol. 35 >> Issue (10): 1090-1098.doi: 10.3866/PKU.WHXB201810059
所属专题: 二维材料及器件
收稿日期:
2018-10-26
发布日期:
2018-11-28
通讯作者:
金万勤
E-mail:wqjin@njtech.edu.cn
作者简介:
JIN Wanqin is a professor of chemical engineering at Nanjing Tech University. He received his PhD degree from Nanjing University of Technology in 1999. He was a research associate at the Institute of Materials Research & Engineering of Singapore (2001), an Alexander von Humboldt Research Fellow (2001-2013), and visiting professors at Arizona State University (2007) and Hiroshima University (2011, JSPS invitation fellowship). His current research focuses on membrane materials and processes
基金资助:
Long CHENG,Gongping LIU,Wanqin JIN*()
Received:
2018-10-26
Published:
2018-11-28
Contact:
Wanqin JIN
E-mail:wqjin@njtech.edu.cn
Supported by:
摘要:
以石墨烯代表的二维材料已经成为新型高性能膜的纳米构建单元。原子级厚度的纳米片有利于制备超薄膜,极大提升膜的通量;与此同时,可实现在亚纳米级别精度下操纵传输通道实现精确的分子筛分,在气体分离领域有着广阔的前景。本文简要综述了二维材料膜在气体分离领域的最新突破性研究,重点介绍了如何实现亚纳米级别的二维通道,结构完整的二维纳米片的剥离方法及气体传输特性可调节的层间通道,并分析了二维材料膜发展面临的挑战和机遇。
程龙,刘公平,金万勤. 二维材料膜在气体分离领域的最新研究进展[J]. 物理化学学报, 2019, 35(10), 1090-1098. doi: 10.3866/PKU.WHXB201810059
Long CHENG,Gongping LIU,Wanqin JIN. Recent Progress in Two-dimensional-material Membranes for Gas Separation[J]. Acta Physico-Chimica Sinica 2019, 35(10), 1090-1098. doi: 10.3866/PKU.WHXB201810059
Fig 1
Subnanometer 2D channels manipulated by external forces for ultra-fast gas sieving 9. a) External force-driven assembly (EFDA) approach for fabricating 2D channels, which involves 3D external forces in x, y, and z axes. Enlarged schematic shows force analysis for one 2D channel unit consisting of GO nanosheets and polymer chains. Three main forces are included: intrinsic force, outer external forces (compressive force, centrifugal force and shear force), which are applied outside the 2D channel unit, and inner external force (GO-polymer molecular interactions), which are applied inside the 2D channel unit. b) Cross-sectional SEM and c) TEM images of EFDA-GO membrane. d) Analysis for the average interlayer height of 2D channels in membranes. XRD spectra of EFDA-GO membranes with PEI solution concentration of 0-1% (weight percent). e) H2/CO2 separation performance of EFDA-GO membranes compared with state-of-the-art gas separation membranes. Reproduced with permission from American Chemical Society."
Fig 2
Molecular sieving membranes composed of 2D metal-organic nanosheets for gas separation 15, 16. a) Architecture of the layered Zn2(bim)4 precursor. The ab planes are highlighted in purple to better illustrate the layered structure 15. b) Powder XRD patterns of four membranes with different separation properties. The cartoons schematically illustrate the microstructural features of the nanosheet layers. The yellow and green portions correspond to the low-angle humps and the (002) peaks in the XRD patterns, respectively 15. c) Anomalous relationship between selectivity and permeance measured from 15 membranes. All the membranes were measured for equimolar mixtures at room temperature and 101.325 kPa 15. d) Crystal structure of MAMS-1. The ab planes are highlighted in magenta to illustrate the layered structure 16. e) The freeze-thaw exfoliation of MAMS-1 crystals into dispersed nanosheets 16. f) Gas permeance and H2/CO2 separation factors of the 40-nm membrane under seven heating/cooling cycles. Different colors represent various temperatures: blue, 20 ℃; magenta, 40 ℃; olive, 60 ℃; orange, 80 ℃; red, 100 ℃ and black, 120 ℃ 16. Reproduced with permission from the American Association for the Advancement of Science and Nature Publishing Group."
Fig 3
Layered double hydroxide membranes with different microstructures 18, 19. a) Schematic illustration of the concept of interlayer gallery-based separation. In the figure, layered compounds with a gallery height of 0.31 nm represent NiAl-CO3 LDH membranes. Gas molecules with kinetic diameters of 0.29 and 0.38 nm represent H2 and CH4, respectively 19. b) Top image and c) the cross-sectional image of the LDH membrane 18. d) Schematic illustration of the in situ hydrothermal growth of NiAl-CO3 LDH membranes with diverse microstructures. CO2 plays an important role in controlling the preferred orientation of the NiAl-CO3 LDH crystals in the membranes 19. e) XRD patterns of NiAl-CO3 LDH membranes prepared with (a) DI water and (b) CO2-saturated water as solvents, respectively. Inset: schematic illustration of the microstructure of each LDH membrane based on the XRD pattern and SEM image 19. Reproduced with permissions from RSC."
Fig 4
MXene membranes for gas separation 21, 22. a) SEM image of the delaminated MXene nanosheets on porous anodic aluminum oxide (AAO) (scale bar, 1 μm). Inset is the Tyndall scattering effect in MXene colloidal solution in water 21. b) SEM image of the MXene membrane surface (scale bar, 500 nm). Inset is a photograph of a MXene membrane 21. c) SEM image of 20 nm thick MXene nanofilms' cross section. Inserted in panel c) is the enlarged cross-sectional SEM image of MXene nanofilms 22. d) HRTEM image of 20 nm thick MXene nanofilms 22. e) H2/CO2 separation performance of the MXene membrane compared with state-of-the-art gas separation membranes. The black line indicates the Robeson 2008 upper bound of polymeric membranes for H2/CO2 separation, and the orange dashed line represents the 2017 upper bound of the best current membranes for H2/CO2 separation 21. f) H2/CO2 separation compared with state-of-the-art gas separation membranes. The solid red star symbol represents the single gas permeation at 150 kPa and 25 ℃, while the open red star symbol represents the mixed gas permeation (50 : 50 H2/CO2, volume percent) at 100 kPa and 25 ℃ 22. Reproduced with permission from Nature Publishing Group and John Wiley and Sons."
Table 1
Comparison of gas separation performance of 2D-material membranes."
2D-material membranes | Preparation method | Membrane thickness | Feed condition a | Permeate rate/ permeance/permeabilityb | Selectivityb | Permeate rate/ permeance/permeabilityc | Selectivityc | Ref. |
Porous graphene | Simulation All-H | Monolayer | H2/CH4 | 1 × 10-20 mol-s-1-Pa-1 | 1023 | |||
passivation | graphene | |||||||
Porous graphene | Simulation N and | Monolayer | CO2/CH4 | 106 GPU | 3.99 | |||
methyl passivation | graphene | |||||||
Porous graphene | Simulation N and | Monolayer | CO2/CH4 | 4.4 × 10-4 mol·m-2-s-1-Pa-1 | 11.8 | |||
H passivation | graphene | |||||||
Porous graphene | Ultraviolet-induced | Bilayer | H2/CH4 | 4.5 × 10-23 mol-s-1-Pa-1 | 104 | |||
oxidative etching | graphene | |||||||
Porous graphene | Focused ion | Bilayer | H2/CO2 | 5.0 × 10-3 mol·m-2-s-1-Pa-1 | 4.6 | |||
beam perforation | graphene | |||||||
Few-layered GO/PES | Spinning coating | 3-7 nm | CO2/N2 | 120 GPU | 55 | |||
Thermal reduced | Not available | H2/CO2(140 ℃) | 1000 GPU | 40 | ||||
GO/AAO | Vacuum filtration | 9 nm | H2/CO2 | 10-7 mol·m-2-s-1-Pa-1 | 3400 | |||
H2/N2 | 900 | |||||||
GO/a-Al2O3 | External force | 1 | H2/CO2 | 840-1200 Barrer | 29-33 | 783 Barrer | 17.2 | |
driven assembly | ||||||||
H2/C3H8 | 260 | 648 Barrer | 230.8 | |||||
GO/PES | Borate crosslinking | 8 nm | CO2/CH4 | 650 GPU | 75 | 665 GPU | 79 | |
CO2/N2 | 57 | 60 | ||||||
GO/PES hollow fiber | Vacuum filtration | 9 nm | CO2/N2 | 49 GPU | 50 | 35 GPU | 34 | |
(15% : 85%) | ||||||||
Piperazine crosslinking | 16 nm | CO2/N2 | 1020 GPU | 680 | ||||
(15% :85%, 80 ℃) | ||||||||
Zn2(bim)4/α-Al2O3 | Hot-drop coating | Several nanometers | H2/CO2 | 2280 ± 490 GPU | 230 ± 39 | |||
MAMS-1/AAO | Hot-drop coating | 40 nm | H2/CO2 | 553 ± 228 GPU | 235 ± 14 | |||
NiAl-CO3 LDH/ | In situ growth | 5 | H2/CH4(180 ℃) | 4.6 × 10-8 mol·m-2-s-1-Pa-1 | 78.7 | |||
γ-Al2O3 modified | ||||||||
α-Al2O3 | ||||||||
ZnAl-NO3 LDH/ | In situ growth | 2.5 | H2/CH4(180 ℃) | 3.7 × 10-8 mol·m-2-s-1-Pa-1 | 13.7 | |||
γ-AkO3 modified | ||||||||
α-Al2O3 | ||||||||
Freestanding MXene | Vacuum filtration | 2 | H2/CO2 | 2402 Barrer | 238.4 | 2226 Barrer | 166.6 | |
MXene/AAO | Vacuum filtration | 20 nm | H2/CO2 | 1584 GPU | 27 | 1200 GPU | 20 | |
Borate/PEI crosslinking | 20 nm | CO2/CH4 | 350 GPU | 15.3 | 245 GPU | 11.5 |
1 | (a) Huang, C. S.; Li, Y. L. Acta Phys.-Chim. Sin. 2016, 32, 1314.[黄长水,李玉良.物理化学学报, 2016, 32, 1314.] doi: 10.3866/PKU.WHXB201605035 |
(b) Liang, J. X.; Xiao, Z. C.; Zhi, L. J. Acta Phys.-Chim. Sin. 2016, 32, 2390.[梁家旭,肖志昌,智林杰.物理化学学报, 2016, 32, 2390.] doi: 10.3866/PKU.WHXB201607132 | |
(c) Tan, C.; Cao, X.; Wu, X. J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G. H.; et al. Chem. Rev. 2017, 117, 6225. doi: 10.1021/acs.chemrev.6b00558 | |
2 |
Liu G. P. ; Jin W. Q. ; Xu N. P. Angew. Chem. Int. Ed. 2016, 55, 13384.
doi: 10.1002/anie.201600438 |
3 |
Bunch J. S. ; Verbridge S. S. ; Alden J. S. ; van der Zande A. M. ; Parpia J. M. ; Craighead H. G. ; McEuen P. L. Nano Lett. 2008, 8, 2458.
doi: 10.1021/nl801457b |
4 |
Jiang D. E. ; Cooper V. R. ; Dai S. Nano Lett. 2009, 9, 4019.
doi: 10.1021/nl9021946 |
5 | (a) Sun, C.; Bai, B. Acta Phys.-Chim. Sin. 2018, 34, 1136.[孙成珍,白博峰.物理化学学报, 2018, 34, 1136.] doi: 10.3866/PKU.WHXB201801301 |
(b) Wen, B. Y.; Sun, C. Z.; Bai, B. F. Acta Phys.-Chim. Sin. 2015, 31, 261.[温伯尧,孙成珍,白博峰.物理化学学报, 2015, 31, 261.] doi: 10.3866/PKU.WHXB201411271 | |
6 |
Koenig S. P. ; Wang L. ; Pellegrino J. ; Bunch J. S. Nature Nanotech. 2012, 7, 728.
doi: 10.1038/nnano.2012.162 |
7 |
Celebi K. ; Buchheim J. ; Wyss R. M. ; Droudian A. ; Gasser P. ; Shorubalko I. ; Kye J. I. ; Lee C. ; Park H. G. Science 2014, 344, 289.
doi: 10.1126/science.1249097 |
8 | (a) Kim, H. W.; Yoon, H. W.; Yoon, S. M.; Yoo, B. M.; Ahn, B. K.; Cho, Y. H.; Shin, H. J.; Yang, H.; Paik, U.; Kwon, S.; et al. Science 2013, 342, 91. 10.1126/science.1236098 |
(b) Li, H.; Song, Z.; Zhang, X.; Huang, Y.; Li, S.; Mao, Y.; Ploehn, H. J.; Bao, Y.; Yu, M. Science 2013, 342, 95. doi: 10.1126/science.1236686 | |
9 |
Shen J. ; Liu G. ; Huang K. ; Chu Z. ; Jin W. ; Xu N. ACS Nano 2016, 10, 3398.
doi: 10.1021/acsnano.5b07304 |
10 |
Chen L. ; Shi G. S. ; Shen J. ; Peng B. Q. ; Zhang B. W. ; Wang Y. Z. ; Bian F. G. ; Wang J. J. ; Li D. Y. ; Qian Z. ; et al Nature 2017, 550, 415.
doi: 10.1038/nature24044 |
11 |
Hu M. ; Mi B. Environ. Sci. Technol. 2013, 47, 3715.
doi: 10.1021/es400571g |
12 |
Hung W. S. ; Tsou C. H. ; De Guzman M. ; An Q. F. ; Liu Y. L. ; Zhang Y. M. ; Hu C. C. ; Lee K. R. ; Lai J. Y. Chem. Mater. 2014, 26, 2983.
doi: 10.1021/cm5007873 |
13 |
Wang S. ; Wu Y. ; Zhang N. ; He G. ; Xin Q. ; Wu X. ; Wu H. ; Cao X. ; Guiver M. D. ; Jiang Z. Energ. Environ. Sci. 2016, 9, 3107.
doi: 10.1039/c6ee01984f |
14 |
Zhou F. ; Tien H. N. ; Xu W. L. ; Chen J. T. ; Liu Q. ; Hicks E. ; Fathizadeh M. ; Li S. ; Yu M. Nat. Commun. 2017, 8, 2107.
doi: 10.1038/s41467-017-02318-1 |
15 |
Peng Y. ; Li Y. ; Ban Y. ; Jin H. ; Jiao W. ; Liu X. ; Yang W. Science 2014, 346, 1356.
doi: 10.1126/science.1254227 |
16 |
Wang X. ; Chi C. ; Zhang K. ; Qian Y. ; Gupta K. M. ; Kang Z. ; Jiang J. ; Zhao D. Nat. Commun. 2017, 8, 14460.
doi: 10.1038/ncomms14460 |
17 |
Wang Q. ; O'Hare D. Chem. Rev. 2012, 112, 4124.
doi: 10.1021/cr200434v |
18 |
Liu Y. ; Wang N. ; Cao Z. ; Caro J. J. Mater. Chem. A 2014, 2, 1235.
doi: 10.1039/c3ta13792a |
19 |
Liu Y. ; Wang N. ; Caro J. J. Mater. Chem. A 2014, 2, 5716.
doi: 10.1039/c4ta00108g |
20 |
Naguib M. ; Kurtoglu M. ; Presser V. ; Lu J. ; Niu J. ; Heon M. ; Hultman L. ; Gogotsi Y. ; Barsoum M. W. Adv. Mater. 2011, 23, 4248.
doi: 10.1002/adma.201102306 |
21 |
Ding L. ; Wei Y. ; Li L. ; Zhang T. ; Wang H. ; Xue J. ; Ding L. X. ; Wang S. ; Caro J. ; Gogotsi Y. Nat. Commun. 2018, 9, 155.
doi: 10.1038/s41467-017-02529-6 |
22 |
Shen J. ; Liu G. ; Ji Y. ; Liu Q. ; Cheng L. ; Guan K. ; Zhang M. ; Liu G. ; Xiong J. ; Yang J. ; et al Adv. Funct. Mater. 2018, 28, 1801511.
doi: 10.1002/adfm.201801511 |
23 |
Zhang P. ; Li J. ; Lv L. ; Zhao Y. ; Qu L. ACS Nano 2017, 11, 5087.
doi: 10.1021/acsnano.7b01965 |
[1] | 林凯风, 钟叮, 邵嘉惠, 刘开辉, 王金焕, 左勇刚, 周旭. 二维材料复合光纤调制器件研究进展[J]. 物理化学学报, 2023, 39(10): 2306026 - . |
[2] | 曹晓辉, 侯成义, 李耀刚, 李克睿, 张青红, 王宏志. 基于MXenes的功能纤维的制备及其在智能可穿戴领域的应用[J]. 物理化学学报, 2022, 38(9): 2204058 - . |
[3] | 阙海峰, 江华宁, 王兴国, 翟朋博, 孟令佳, 张鹏, 宫勇吉. 二维材料范德华间隙的利用[J]. 物理化学学报, 2021, 37(11): 2010051 - . |
[4] | 王易,霍旺晨,袁小亚,张育新. 二氧化锰与二维材料复合应用于超级电容器[J]. 物理化学学报, 2020, 36(2): 1904007 - . |
[5] | 谭淼,张磊,梁万珍. 基于二维材料WX2构建的范德华异质结的结构和性质及应变效应的理论研究[J]. 物理化学学报, 2019, 35(4): 385 -393 . |
[6] | 李家意,丁一,张卫,周鹏. 基于二维材料及其范德瓦尔斯异质结的光电探测器[J]. 物理化学学报, 2019, 35(10): 1058 -1077 . |
[7] | 杜春保,胡小玲,张刚,程渊. 二维材料“遇见”生物大分子:机遇与挑战[J]. 物理化学学报, 2019, 35(10): 1078 -1089 . |
[8] | 任玉美,许群. 构筑先进二维异质结构Ag/WO3−x用于提升光电转化效率[J]. 物理化学学报, 2019, 35(10): 1157 -1164 . |
[9] | 陈熙,张胜利. 基于3d元素掺杂的石墨二炔分子传感材料性能调控[J]. 物理化学学报, 2018, 34(9): 1061 -1073 . |
[10] | 凌崇益,王金兰. 基于类石墨烯二维材料的析氢反应电催化剂的研究进展[J]. 物理化学学报, 2017, 33(5): 869 -885 . |
[11] | 贺雷,张向倩,陆安慧. 二维炭基多孔材料的合成及应用[J]. 物理化学学报, 2017, 33(4): 709 -728 . |
[12] | 曾梦琪,张涛,谭丽芳,付磊. 液态金属催化剂:二维材料的点金石[J]. 物理化学学报, 2017, 33(3): 464 -475 . |
[13] | 张绍政,刘佳,谢燕,陆银稷,李林,吕亮,杨建辉,韦世豪. 二维M2XO2-2x(OH)2x(M=Ti, V;X=C, N)析氢催化活性的第一性原理研究[J]. 物理化学学报, 2017, 33(10): 2022 -2028 . |
[14] | 石乃恩,宋传远,张俊,黄维. 金属卟啉二维纳米晶的制备及其光电性能[J]. 物理化学学报, 2016, 32(10): 2447 -2461 . |
[15] | 杨建辉, 计嘉琳, 李林, 韦世豪. 二维TiC 层表面H2的化学吸附与物理吸附[J]. 物理化学学报, 2014, 30(10): 1821 -1826 . |
|