物理化学学报 >> 2023, Vol. 39 >> Issue (10): 2306026.doi: 10.3866/PKU.WHXB202306026

所属专题: 北大纳米化学研究中心30周年专刊

综述 上一篇    下一篇

二维材料复合光纤调制器件研究进展

林凯风1, 钟叮2, 邵嘉惠1, 刘开辉1,3,*(), 王金焕3,*(), 左勇刚4,*(), 周旭5,6,*()   

  1. 1 北京大学前沿交叉学科研究院,人工微结构与介观物理国家重点实验室,北京 100871
    2 中国人民大学物理学系,北京 100872
    3 北京大学物理学院,人工微结构与介观物理国家重点实验室,北京 100871
    4 昆明理工大学冶金与能源工程学院,省部共建复杂有色金属资源清洁利用国家重点实验室,昆明 650031
    5 华南师范大学物理学院,广东省量子调控工程与材料重点实验室,广州 510006
    6 华南师范大学物理前沿科学研究院,粤港量子物质联合实验室,广州 510006
  • 收稿日期:2023-06-13 录用日期:2023-07-31 发布日期:2023-08-08
  • 通讯作者: 刘开辉,王金焕,左勇刚,周旭 E-mail:khliu@pku.edu.cn;jinhuan_wang@163.com;science_zyg@163.com;xuzhou2020@m.scnu.edu.cn
  • 作者简介:第一联系人:

    These authors contributed equally to this work.

  • 基金资助:
    国家自然科学基金(52102044);国家自然科学基金(52203331);广州市基础与应用研究项目(202201010395)

Research Progress of Two-Dimensional Material Hybrid Fiber Modulators

Kaifeng Lin1, Ding Zhong2, Jiahui Shao1, Kaihui Liu1,3,*(), Jinhuan Wang3,*(), Yonggang Zuo4,*(), Xu Zhou5,6,*()   

  1. 1 State key Laboratory of Artificial Microstructure and Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
    2 Department of Physics, Renmin University of China, Beijing 100872, China
    3 State key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
    4 The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650031, China
    5 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510631, China
    6 Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510631, China
  • Received:2023-06-13 Accepted:2023-07-31 Published:2023-08-08
  • Contact: Kaihui Liu, Jinhuan Wang, Yonggang Zuo, Xu Zhou E-mail:khliu@pku.edu.cn;jinhuan_wang@163.com;science_zyg@163.com;xuzhou2020@m.scnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(52102044);the National Natural Science Foundation of China(52203331);Guangzhou Basic and Applied Basic Research Projects(202201010395)

摘要:

随着通信技术的快速发展和广泛应用,光纤通信以其高容量和低损耗的优势,已成为现代信息通信的基础。在光纤通信系统中,光调制器是实现光信号调制的关键器件之一,通常基于块状晶体的电学和光电子学器件。然而,这类器件会影响光在高密度传输过程中的质量,限制了光纤通信实现高速和高容量性能的潜力。为了解决这个问题,研究人员一直致力于开发全光纤器件,可以在不中断光纤传输过程的情况下对光信号进行调制、放大和检测。近年来,设计和制造了许多具有不同结构的新型光纤。其中,二维材料在光调制领域引起了人们的广泛关注,因为它们具有可以增强光与物质之间相互作用的独特性质。基于二维材料复合光纤的光纤型调制器有望为光纤通信带来新的机遇。在本文中,我们将介绍将二维材料与不同结构的光纤进行复合的各种方法,例如光纤端面复合、孔内壁复合、拉锥复合和侧剖复合。这些方法可以有效地整合二维材料和光纤的优势,创造出具有高性能和功能性的新型光调制器。我们还将举例介绍一些基于二维材料复合光纤的光调制器,例如基于MoS2的全光波长调制器、基于石墨烯的电光吸收调制器和基于MXene的热光相位调制器。这些器件可以通过利用二维材料的光学、电学或热学性质来调制光信号的波长、强度或相位。这些器件可以通过改变二维材料折射率的实部和虚部来实现对光信号的调制。此外,我们还将总结二维材料复合光纤调制器在不同领域(如全光、电光和热光)的调制原理、过程和应用。我们将与基于块状晶体器件的传统光调制器进行优缺点比较,并讨论它们在提高光纤通信系统性能和效率方面的潜力。最后,我们将讨论二维材料复合光纤领域所面临的机遇和挑战,并提出未来研究方向和发展前景。

关键词: 光纤, 二维材料, 调制器, 二维材料复合光纤, 全光调制, 电光调制, 热光调制

Abstract:

Communication technology has been rapidly advancing and widely applied in various fields, and optical fiber communication has become the fundamental basis of modern information communication, thanks to its high capacity and low loss. Optical modulators, which are essential devices in optical fiber communication systems, are typically based on bulk crystal electrical and optoelectronic devices. However, these devices have a drawback that they affect the quality of light in high-density transmission processes, thereby limiting the potential of optical fiber communication to achieve high-speed and high-capacity performance. To overcome this dilemma, researchers have been devoted to developing all-fiber devices capable of modulating, amplifying and detecting optical signals without interrupting the optical fiber transmission process. In recent years, many new types of optical fibers with different structures have been designed and fabricated. Among them, two-dimensional materials are exciting considerable attention in the field of optical modulation due to their unique properties that enhance the interaction between light and matter. Optical fiber-type modulators based on two-dimensional material hybrid fibers are expected to bring new opportunities for optical fiber communication. In this article, we will introduce various methods of combining two-dimensional materials with different structures of optical fibers, such as fiber end-face composites, hole inner-wall composites, tapered composites and side-polished composites structures. These methods can effectively integrate the advantages of both two-dimensional materials and optical fibers, and create novel optical modulators with high performance and functionality. We will also present some examples of optical modulators based on two-dimensional material hybrid fibers, including MoS2-based all-optical wavelength modulators, graphene-based electro-optical absorption modulators, and MXene-based thermo-optical phase modulators. These devices can modulate the wavelength, intensity or phase of optical signals by exploiting the optical, electrical or thermal properties of two-dimensional materials. The modulation of optical signals is achieved by changing the real and imaginary parts of the refractive index of two-dimensional materials through external optical, electric or thermal fields. In addition, we will summarize the modulation principles, processes and applications of two-dimensional material hybrid fiber modulators in different domains, such as all-optical, electro-optical, and thermo-optical. We will compare their advantages and disadvantages with conventional optical modulators based on bulk crystal devices, and explore their potential for improving the performance and efficiency of optical fiber communication systems. Finally, we will discuss the opportunities and challenges faced by the field of two-dimensional material hybrid fibers, and take a look at the perspectives for future research directions and developments.

Key words: Optical fiber, Two-dimensional material, Modulator, Two-dimensional material hybrid fiber, All-optical modulation, Electro-optic modulation, Thermo-optic modulation