物理化学学报 >> 2021, Vol. 37 >> Issue (11): 2010051.doi: 10.3866/PKU.WHXB202010051

所属专题: 能源与材料化学

综述 上一篇    下一篇

二维材料范德华间隙的利用

阙海峰, 江华宁, 王兴国, 翟朋博, 孟令佳, 张鹏, 宫勇吉()   

  • 收稿日期:2020-10-23 录用日期:2020-11-23 发布日期:2020-12-01
  • 通讯作者: 宫勇吉 E-mail:yongjigong@buaa.edu.cn
  • 作者简介:宫勇吉,2011年本科毕业于北京大学化学与分子工程学院。2015年博士毕业于美国莱斯大学。2016–2017年在美国斯坦福大学从事博士后研究。现为北京航空航天大学材料科学与工程学院教授,博士生导师。主要研究方向为二维材料的合成、性质调控及其在信息器件、新能源器件方面的应用
  • 基金资助:
    国家自然科学基金(51872012);国家重点研发计划(2018YFA0306900)

Utilization of the van der Waals Gap of 2D Materials

Haifeng Que, Huaning Jiang, Xingguo Wang, Pengbo Zhai, Lingjia Meng, Peng Zhang, Yongji Gong()   

  • Received:2020-10-23 Accepted:2020-11-23 Published:2020-12-01
  • Contact: Yongji Gong E-mail:yongjigong@buaa.edu.cn
  • About author:Yongji Gong, Email: yongjigong@buaa.edu.cn; Tel.: +86-18513835303
  • Supported by:
    the National Natural Science Foundation of China(51872012);the Key Technologies Research and Development Program of China(2018YFA0306900)

摘要:

二维材料因为其优异且可调的各种物理化学性质自被发现以来就引起了科研工作者的极大关注。其电学、光学、量子、催化等方面的一些独特性质使其迅速成为一类极其重要的材料体系。二维材料层间弱结合的性质为利用范德华间隙来调控体系的电子结构从而进一步优化材料性能创造了条件。客体原子的引入可以显著改变原有材料的层间间距,改变层间的耦合强度。客体与宿主原子的相互作用也可能改变原始材料的电子结构,从而影响材料的多方面性能,甚至带来新的性质。以锂离子电池为代表的层间存储也是二维范德华间隙在能源存储方面的重要应用,一直受到许多科研工作者的关注。在本综述中,我们从利用插层法改变层间距从而改变层间耦合,引入客体物质与宿主原子相互作用从而改变原材料的物理化学性质或引入新性质和层间储能四个方面系统化阐述了二维材料范德华间隙的各种调控方法及其对合成材料的物理、化学性能的巨大影响,并展望了二维范德华间隙进一步开发利用的方向。

关键词: 二维材料, 范德华间隙, 插层技术, 层间相互作用, 性能优化, 能源存储

Abstract:

Since their discovery, two-dimensional (2D) materials have attracted significant research attention owing to their excellent and controllable physical and chemical properties. These materials have emerged rapidly as important material system owing to their unique properties such as electricity, optics, quantum properties, and catalytic properties. 2D materials are mostly bonded by strong ionic or covalent bonds within the layers, and the layers are stacked together by van der Waals forces, thereby making it possible to peel off 2D materials with few or single layers. The weak interaction between the layers of 2D materials also enables the use of van der Waals gaps for regulating the electronic structure of the system and further optimizing the material properties. The introduction of guest atoms can significantly change the interlayer spacing of the original material and coupling strength between the layers. Also, interaction between the guest and host atom also has the potential to change the electronic structure of the original material, thereby affecting the material properties. For example, the electron structure of a host can be modified by interlayer guest atoms, and characteristics such as carrier concentration, optical transmittance, conductivity, and band gap can be tuned. Organic cations intercalated between the layers of 2D materials can produce stable superlattices, which have great potential for developing new electronic and optoelectronic devices. This method enables the modulation of the electrical, magnetic, and optical properties of the original materials, thereby establishing a family of 2D materials with widely adjustable electrical and optical properties. It is also possible to introduce some new properties to the 2D materials, such as magnetic properties and catalytic properties, by the intercalation of guest atoms. Interlayer storage, represented by lithium-ion batteries, is also an important application of 2D van der Waals gap utilization in energy storage, which has also attracted significant research attention. Herein, we review the studies conducted in recent years from the following aspects: (1) changing the layer spacing to change the interlayer coupling; (2) introducing the interaction between guest and host atoms to change the physico-chemical properties of raw materials; (3) introducing the guest substances to obtain new properties; and (4) interlayer energy storage. We systematically describe various interlayer optimization methods of 2D van der Waals gaps and their effects on the physical and chemical properties of synthetic materials, and suggest the direction of further development and utilization of 2D van der Waals gaps.

Key words: Two-dimensional materials, van der Waals gap, Intercalation technology, Interlayer interaction, Performance optimization, Energy storage