物理化学学报 >> 2023, Vol. 39 >> Issue (7): 2212028.doi: 10.3866/PKU.WHXB202212028

论文 上一篇    下一篇

基于硒化镓纳米片填充的空芯光纤超高二次谐波增强

王晓愚1,2, 程阳1, 薛国栋1, 周子琦1, 赵孟泽1, 马超杰1, 谢瑾1,2, 姚光杰1,2, 洪浩1, 周旭4,*(), 刘开辉1,*(), 刘忠范2,3,*()   

  1. 1 北京大学物理学院, 纳米光电子前沿科学中心, 介观物理国家重点实验室, 北京 100871
    2 北京石墨烯研究院(BGI), 北京 100095
    3 北京大学化学与分子工程学院, 纳米化学中心, 北京 100871
    4 华南师范大学物理与通信工程学院, 广东省量子工程与量子材料重点实验室, 广州 510006
  • 收稿日期:2022-12-17 录用日期:2023-01-20 发布日期:2023-03-06
  • 通讯作者: 周旭,刘开辉,刘忠范 E-mail:xuzhou2020@m.scnu.edu.cn;khliu@pku.edu.cn;zfliu@pku.edu.cn
  • 作者简介:第一联系人:

    These authors contributed equally to this work.

  • 基金资助:
    国家重点研发计划(2021YFA1400201);国家重点研发计划(2021YFB3200303);国家重点研发计划(2021YFA1400502);国家重点研发计划(2022YFA1403504);国家自然科学基金(52021006);国家自然科学基金(52172035);国家自然科学基金(92163206);国家自然科学基金(52025023);国家自然科学基金(12104018);中国科学院战略重点研究计划(XDB33000000);中国博士后科学基金(2021T140022);广州市基础与应用基础研究(202201010395)

Giant Enhancement of Optical Second Harmonic Generation in Hollow-Core Fiber Integrated with GaSe Nanoflakes

Xiaoyu Wang1,2, Yang Cheng1, Guodong Xue1, Ziqi Zhou1, Mengze Zhao1, Chaojie Ma1, Jin Xie1,2, Guangjie Yao1,2, Hao Hong1, Xu Zhou4,*(), Kaihui Liu1,*(), Zhongfan Liu2,3,*()   

  1. 1 State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
    2 Beijing Graphene Institute (BGI), Beijing 100095, China
    3 Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
    4 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
  • Received:2022-12-17 Accepted:2023-01-20 Published:2023-03-06
  • Contact: Xu Zhou, Kaihui Liu, Zhongfan Liu E-mail:xuzhou2020@m.scnu.edu.cn;khliu@pku.edu.cn;zfliu@pku.edu.cn
  • Supported by:
    the National Key R&D Program of China(2021YFA1400201);the National Key R&D Program of China(2021YFB3200303);the National Key R&D Program of China(2021YFA1400502);the National Key R&D Program of China(2022YFA1403504);the National Natural Science Foundation of China(52021006);the National Natural Science Foundation of China(52172035);the National Natural Science Foundation of China(92163206);the National Natural Science Foundation of China(52025023);the National Natural Science Foundation of China(12104018);the Strategic Priority Research Program of Chinese Academy of Sciences(XDB33000000);the China Postdoctoral Science Foundation(2021T140022);the Guangzhou Basic and Applied Basic Research Projects(202201010395)

摘要:

与传统的光学晶体相比,全光纤功能器件由于和光纤系统的天然兼容性,被认为是下一代集成光学的重要研究方向,吸引了人们的广泛关注。然而,由于二氧化硅固有的中心反演对称性质,光纤中的二阶非线性光学过程仍有待探索,这在可调谐超快激光、全光信号处理、成像和光通信等商业全光纤非线性光学应用中具有重要意义。因此,我们提出了一种新的溶液填充方法,可有效地将具有高非线性的硒化镓纳米片直接沉积在长度达半米的空芯光纤(HCF)的内孔壁上。此外,采用制备的硒化镓纳米片-空芯光纤(GaSe-HCF)作为光频率转换器,其二次谐波(SHG)比嵌入MoS2的HCF和普通HCF分别提高了2个数量级和3个数量级。我们的研究成果将拓展其它非线性材料在全光纤高端非线性光学和光电子学中的应用,并提供新的制备思路。

关键词: 空芯光纤, 硒化镓, 光学二次谐波, 光频率转换器, 溶液填充法, 纳米材料

Abstract:

All-fiber functional devices are superior to conventional optical crystals for next-generation integrated optics owing to their natural compatibility with optical fiber systems. Nonlinear optical fiber devices play an important role in frequency conversion and optical parametric amplification. However, optical fibers are unsuitable for all-optical systems owing to the intrinsic properties of pure quartz. Optical second harmonic generation (SHG), which is significant in practical optical applications, is theoretically forbidden in traditional centrosymmetric non-crystalline fused silica fibers. Consequently, generating giant second-order optical processes in optical fibers remains challenging. Many studies have attempted to artificially break the centrosymmetry of fused silica fibers using various poling techniques, such as thermal or electric field poling, which can enhance the second-order nonlinear optical susceptibility. However, these methods require difficult and complicated fabrication processes, and the corresponding hybrid optical fibers exhibit an inefficient harmonic generation process, which greatly increases the cost and limits the development of all-fiber nonlinear functionalization. Therefore, there is an urgent need for new fabrication methods and technical means for functionalizing optical fiber devices that can improve the second-order nonlinear effect while remaining simple and practical. Herein, we propose an improved solution-filling method that can effectively deposit highly nonlinear GaSe nanoflakes directly on the inner walls of hollow-core fibers (HCF) with a length of up to half a meter. In addition, the as-fabricated hollow-core fiber integrated with GaSe nanoflakes (GaSe-HCF) is used to demonstrate that the second-order nonlinear effect of the optical fiber is enhanced by the ultrahigh nonlinear effect of the GaSe materials. Compared to previously reported MoS2-embedded hollow-core fibers (MoS2-HCF) and conventional optical fibers, the SHG of the GaSe-HCF is three and two orders of magnitude stronger than that of bare HCF and MoS2-HCF, respectively. A GaSe-HCF with a length of up to half a meter was successfully prepared using the new filling method and exhibited good expansibility. The pressure process was exploited by adding a short length of air column to effectively fill the HCF with the highly nonlinear GaSe suspension, and expand the applicability of this method. Our results will provide a novel and highly efficient strategy to manufacture nonlinear optical fibers integrated with other nanomaterials and can be used to fabricate new all-fiber devices with strongly enhanced second-order nonlinear optical processes, thus broadening nonlinear optics and optoelectronics applications.

Key words: Hollow-core fiber, Gallium selenide, SHG, Optical frequency converter, Solution filling method, Nanomaterials