物理化学学报 >> 2020, Vol. 36 >> Issue (3): 1803014.doi: 10.3866/PKU.WHXB201803014

所属专题: 光催化剂

论文 上一篇    下一篇

硫化镉反蛋白石光子晶体制备及光解水制氢

张若兰1,王超1,陈浩1,赵恒1,刘婧1,李昱1,2,*(),苏宝连1,3   

  1. 1 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
    2 武汉理工大学纳微结构研究中心,武汉 430070
    3 那慕尔大学无机材料化学实验室,布鲁塞尔街61号,比利时那慕尔 B-5000
  • 收稿日期:2019-03-05 录用日期:2019-04-09 发布日期:2019-04-12
  • 通讯作者: 李昱 E-mail:yu.li@whut.edu.cn
  • 基金资助:
    国家重点研发计划(2016YFA0202602);国家自然科学基金(U1663225);国家自然科学基金(21671155);国家自然科学基金(21805220);湖北省自然科学基金(2018CFB242);湖北省自然科学基金(2018CFA054);湖北省技术创新专项重大项目(2018AAA012);教育部长江创新团队(IRT_15R52)

Cadmium Sulfide Inverse Opal for Photocatalytic Hydrogen Production

Ruolan Zhang1,Chao Wang1,Hao Chen1,Heng Zhao1,Jing Liu1,Yu Li1,2,*(),Baolian Su1,3   

  1. 1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
    2 Nanostructure Research Centre (NRC), Wuhan University of Technology, Wuhan 430070, P. R. China
    3 Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
  • Received:2019-03-05 Accepted:2019-04-09 Published:2019-04-12
  • Contact: Yu Li E-mail:yu.li@whut.edu.cn
  • Supported by:
    National Key R & D Program of China(2016YFA0202602);National Natural Science Foundation of China(U1663225);National Natural Science Foundation of China(21671155);National Natural Science Foundation of China(21805220);Natural Science Foundation of Hubei Province, China(2018CFB242);Natural Science Foundation of Hubei Province, China(2018CFA054);Major Programs of Technical Innovation in Hubei, China(2018AAA012);Program for Changjiang Scholars Innovative Research Team in University, China(IRT_15R52)

摘要:

对硫化镉反蛋白石结构光子晶体薄膜进行了可控合成,用巯基乙酸修饰的纳米晶和P(St-MMA-SPMAP)高分子小球共组装,成功地构筑了反蛋白石结构并用于可见光光解水产氢。结果表明,在可见光(λ ≥ 420 nm)照射下,CdS-310反蛋白石结构薄膜的光解水产氢性能比硫化镉纳米颗粒提高了一倍。这主要是因为等级孔结构反蛋白石光子晶体特性对催化剂的光催化性能的提升:首先,反蛋白石的周期性结构增加了光子在材料中的传播,提高了催化剂对太阳光的利用率;同时,大孔孔壁是由纳米颗粒堆积而成的,在反应中提供了更多的反应活性位点;此外,孔结构有利于物质的传输和分子的吸附。

关键词: 硫化镉, 光子晶体, 反蛋白石结构, 纳米材料, 光解水产氢

Abstract:

Photocatalysis based on visible light is an efficient and promising strategy to convert solar energy into chemical energy and solve the global issues of environmental pollution and energy shortages. CdS, as a visible light responsive semiconductor material, is widely used in photocatalysis and photoluminescence because of its simple synthesis, abundant raw materials, and appropriate bandgap structure. The inverse opal (IO) structure belonging to photonic crystal structure with unique three-dimensionally ordered macro-mesopore, which can tune the propagation direction of incident light and improve photocatalytic performance. Therefore, IO has attracted extensive attention for photocatalysis applications. Herein, CdS IO photonic crystal films were prepared by co-assembly using CdS nanocrystals and poly(styrene-methyl methacrylate-3-sulfopropyl methacrylate, potassium salt) (P(St-MMA-SPMAP)) emulsion. This method is widely used because it is simple and can rapidly prepare large photonic crystal films. The pore size of the IO structure was regulated by changing the diameter of the polymer. The IO structure was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), and reflectance spectroscopy. The photocatalysis performance of three samples was evaluated via photocatalytic water splitting under visible light irradiation (λ ≥ 420 nm). The photocatalytic hydrogen production rate of the CdS IO film fabricated using a 310 nm P(St-MMA-SPMAP) template (CdS-310) was twice that of CdS nanoparticles (CdS-NPs) under visible light irradiation. This photocatalytic performance enhancement was ascribed to the hierarchically porous structure of the IO photonic crystal. On the one hand, the IO structure increased the propagation of photons in the photocatalytic material and improved sunlight utilization. On the other hand, the structure is conductive to transport and adsorption of molecules. In addition, the IO structure was composed of nanoparticles, providing more active sites for the photocatalytic reaction.

Key words: CdS, Photonic crystal, Inverse opal, Nanomaterials, Photocatalytic hydrogen production