物理化学学报 >> 2020, Vol. 36 >> Issue (1): 1907021.doi: 10.3866/PKU.WHXB201907021
所属专题: 庆祝唐有祺院士百岁华诞专刊
收稿日期:
2019-07-04
录用日期:
2019-08-01
发布日期:
2019-08-29
通讯作者:
张锦
E-mail:jinzhang@pku.edu.cn
作者简介:
张锦,北京大学教授、博士生导师,国家杰出青年基金获得者、教育部长江学者特聘教授、英国皇家化学学会会士、中组部“万人计划”创新领军人才入选者、科技部重点研发计划项目负责人。1997年获兰州大学理学博士学位,1998年至2000年在英国利兹大学从事博士后研究,2000年5月到北京大学化学与分子工程学院工作。主要从事纳米碳材料的控制制备及其拉曼光谱学研究
基金资助:
Shuchen Zhang,Na Zhang,Jin Zhang*()
Received:
2019-07-04
Accepted:
2019-08-01
Published:
2019-08-29
Contact:
Jin Zhang
E-mail:jinzhang@pku.edu.cn
Supported by:
摘要:
碳纳米管独特的几何和电子结构使其具有丰富优异的性质,因此在过去的二十余年备受研究者的关注。然而,碳纳米管结构的多样性成为其从实验室走到产业化的最大阻碍,结构决定性质,制备决定未来,完善的结构控制制备技术将成为碳纳米管基础研究和产业化应用中至关重要的一环。本文首先对碳纳米管的结构进行描述,然后综述了碳纳米管的结构可控制备方法和溶液纯化分离技术,提出未来理想的碳纳米管制备之路是将碳纳米管精细结构控制方法与宏量制备技术相结合,在降低碳纳米管生产成本的同时,提高其纯度,并建立碳纳米管产品的标准。最后,展望了碳纳米管的杀手锏级应用和该领域的机遇和挑战。
张树辰,张娜,张锦. 碳纳米管可控制备的过去、现在和未来[J]. 物理化学学报, 2020, 36(1), 1907021. doi: 10.3866/PKU.WHXB201907021
Shuchen Zhang,Na Zhang,Jin Zhang. Controlled Synthesis of Carbon Nanotubes: Past, Present and Future[J]. Acta Physico-Chimica Sinica 2020, 36(1), 1907021. doi: 10.3866/PKU.WHXB201907021
1 |
Iijima S. Nature 1991, 354, 56.
doi: 10.1038/354056a0 |
2 |
Peng B. ; Locascio M. ; Zapol P. ; Li S. ; Mielke S. L. ; Schatz G. C. ; Espinosa H. D. Nat. Nanotechnol. 2008, 3, 626.
doi: 10.1038/nnano.2008.211 |
3 |
Jin S. H. ; Dunham S. N. ; Song J. ; Xie X. ; Kim J. H. ; Lu C. ; Islam A. ; Du F. ; Kim J. ; Felts J. ; et al A. Nat. Nanotechnol. 2013, 8, 347.
doi: 10.1038/nnano.2013.56 |
4 |
Gong K. ; Du F. ; Xia Z. ; Durstock M. ; Dai L Science 2009, 323, 760.
doi: 10.1126/science.1168049 |
5 |
Baughman R. H. ; Zakhidov A. A. ; de Heer W. A Science 2002, 297, 787.
doi: 10.1126/science.1060928 |
6 |
Chou T. W. ; Gao L. ; Thostenson E. T. ; Zhang Z. ; Byun J. H Compos. Sci. Technol. 2010, 70, 1.
doi: 10.1016/j.compscitech.2009.10.004 |
7 |
De Volder M. F. L. ; Tawfick S. H. ; Baughman R. H. ; Hart A. J Science 2013, 339, 535.
doi: 10.1126/science.1222453 |
8 |
Qiu C. ; Zhang Z. ; Xiao M. ; Yang Y. ; Zhong D. ; Peng L. M Science 2017, 355, 271.
doi: 10.1126/science.aaj1628 |
9 |
Appenzeller J. ; Lin Y. M. ; Knoch J. ; Avouris P Phys. Rev. Lett. 2004, 93, 196805.
doi: 10.1103/PhysRevLett.93.196805 |
10 |
Franklin A. D. ; Luisier M. ; Han S. J. ; Tulevski G. ; Breslin C. M. ; Gignac L. ; Lundstrom M. S. ; Haensch W Nano Lett. 2012, 12, 758.
doi: 10.1021/nl203701g |
11 |
An K. H. ; Kim W. S. ; Park Y. S. ; Moon J. M. ; Bae D. J. ; Lim S. C. ; Lee Y. S. ; Lee Y. H Adv. Funct. Mater. 2001, 11, 387.
doi: 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G |
12 |
Sotowa C. ; Origi G. ; Takeuchi M. ; Nishimura Y. ; Takeuchi K. ; Jang I. Y. ; Kim Y. J. ; Hayashi T. Kim Y A., Endo M., et al. ChemSusChem 2008, 1, 911.
doi: 10.1002/cssc.200800170 |
13 |
Niu C. ; Sichel E. K. ; Hoch R. ; Moy D. ; Tennent H Appl. Phys. Lett. 1997, 70, 1480.
doi: 10.1063/1.118568 |
14 |
Kim P. ; Shi L. ; Majumdar A. ; McEuen P. L Phys. Rev. Lett. 2001, 87, 215502.
doi: 10.1103/PhysRevLett.87.215502 |
15 |
Balandin A. A. ; Ghosh S. ; Bao W. ; Calizo I. ; Teweldebrhan D. ; Miao F. ; Lau C. N Nano Lett. 2008, 8, 902.
doi: 10.1021/nl0731872 |
16 |
Franklin A. D Science 2015, 349, 6249.
doi: 10.1126/science.aab2750 |
17 |
Dresselhaus M. S. ; Dresselhaus G. ; Saito R Carbon 1995, 33, 883.
doi: 10.1016/0008-6223(95)00017-8 |
18 |
Chen Y. ; Zhang J Acc. Chem. Res. 2014, 47, 2273.
doi: 10.1021/ar400314b |
19 |
Chen Y. ; Zhang Y. ; Hu Y. ; Kang L. ; Zhang S. ; Xie H. ; Liu D. ; Zhao Q. ; Li Q. ; Zhang J Adv. Mater. 2014, 26, 5898.
doi: 10.1002/adma.201400431 |
20 |
Zhang R. ; Zhang Y. ; Wei F Acc. Chem. Res. 2017, 50, 179.
doi: 10.1021/acs.accounts.6b00430 |
21 |
Wang H. ; Yuan Y. ; Wei L. ; Goh K. ; Yu D. ; Chen Y Carbon 2015, 81, 1.
doi: 10.1016/j.carbon.2014.09.063 |
22 |
Yang F. ; Wang X. ; Li M. ; Liu X. ; Zhao X. ; Zhang D. ; Zhang Y. ; Yang J. ; Li Y Acc. Chem. Res. 2016, 49, 606.
doi: 10.1021/acs.accounts.5b00485 |
23 |
Li Y. ; Kim W. ; Zhang Y. ; Rolandi M. ; Wang D. ; Dai H. J Phys. Chem. B 2001, 105, 11424.
doi: 10.1021/jp012085b |
24 |
An L. ; Owens J. M. ; McNeil L. E. ; Liu J J. Am. Chem. Soc. 2002, 124, 13688.
doi: 10.1021/ja0274958 |
25 |
Zhang R. ; Zhang Y. ; Zhang Q. ; Xie H. ; Qian W. ; Wei F ACS Nano 2013, 7, 6156.
doi: 10.1021/nn401995z |
26 |
Kang L. ; Zhang S. ; Li Q. ; Zhang J J. Am. Chem. Soc. 2016, 138, 6727.
doi: 10.1021/jacs.6b03527 |
27 |
Zhang S. ; Kang L. ; Wang X. ; Tong L. ; Yang L. ; Wang Z. ; Qi K. ; Deng S. ; Li Q. ; Bai X. ; et al Nature 2017, 543, 234.
doi: 10.1038/nature21051 |
28 |
Moisala A. ; Nasibulin A. G. ; Brown D. P. ; Jiang H. ; Khriachtchev L. ; Kauppinen E. I Chem. Eng. Sci. 2006, 61, 4393.
doi: 10.1016/j.ces.2006.02.020 |
29 |
Zhang Q. ; Huang J. Q. ; Zhao M. Q. ; Qian W. Z. ; Wei F ChemSusChem 2011, 4, 864.
doi: 10.1002/cssc.201100177 |
30 |
Iijima S. ; Ichihashi T. Nature 1993, 363, 603.
doi: 10.1038/363603a0 |
31 |
Hayashi T. ; Kim Y. A. ; Matoba T. ; Esaka M. ; Nishimura K. ; Tsukada T. ; Endo M. ; Dresselhaus M. S. Nano Lett. 2003, 3, 887.
doi: 10.1021/nl034080r |
32 |
Zhang C. ; Bets K. ; Lee S. S. ; Sun Z. ; Mirri F. ; Colvin V. L. ; Yakobson B. I. ; Hauge R. H. ACS Nano 2012, 6, 6023.
doi: 10.1021/nn301039v |
33 |
Hou P. X. ; Li W. S. ; Zhao S. Y. ; Li G. X. ; Shi C. ; Liu C. ; Cheng H. M. ACS Nano 2014, 8, 7156.
doi: 10.1021/nn502120k |
34 |
Chen Y. ; Shen Z. ; Xu Z. ; Hu Y. ; Xu H. ; Wang S. ; Guo X. ; Zhang Y. ; Peng L. ; Ding F. ; et al Nat. Commun. 2013, 4, 2205.
doi: 10.1038/ncomms3205 |
35 |
Kang L. ; Hu Y. ; Liu L. ; Wu J. ; Zhang S. ; Zhao Q. ; Ding F. ; Li Q. ; Zhang J. Nano Lett. 2015, 15, 403.
doi: 10.1021/nl5037325 |
36 |
Zhang S. ; Tong L. ; Hu Y. ; Kang L. ; Zhang J. J. Am. Chem. Soc. 2015, 137, 8904.
doi: 10.1021/jacs.5b05384 |
37 |
Zhang Q. ; Huang J. Q. ; Qian W. Z. ; Zhang Y. Y. ; Wei F. Small 2013, 9, 1237.
doi: 10.1002/smll.201203252 |
38 |
Hu Y. ; Kang L. ; Zhao Q. ; Zhong H. ; Zhang S. ; Yang L. ; Wang Z. ; Lin J. ; Li Q. ; Zhang Z. ; et al Nat. Commun. 2015, 6, 6099.
doi: 10.1038/ncomms7099 |
39 |
Hata K. ; Futaba D. N. ; Mizuno K. ; Namai T. ; Yumura M. ; Iijima S. Science 2004, 306, 1362.
doi: 10.1126/science.1104962 |
40 |
Sun D. M. ; Timmermans M. Y. ; Tian Y. ; Nasibulin A. G. ; Kauppinen E. I. ; Kishimoto S. ; Mizutani T. ; Ohno Y. Nat. Nanotechnol. 2011, 6, 156.
doi: 10.1038/nnano.2011.1 |
41 |
Du R. ; Zhao Q. ; Zhang N. ; Zhang J. Small 2015, 11, 3263.
doi: 10.1002/smll.201403170 |
42 |
Li Y. L. ; Kinloch I. A. ; Windle A. H. Science 2004, 304, 276.
doi: 10.1126/science.1094982 |
43 |
Liu C. ; Cong H. T. ; Li F. ; Tan P. H. ; Cheng H. M. ; Lu K. ; Zhou B. L. Carbon 1999, 11, 1865.
doi: 10.1016/S0008-6223(99)00196-7 |
44 |
Guo T. ; Nikolaev P. ; Rinzler A. G. ; Tomanek D. ; Colbert D. T. ; Smalley R. E. J. Phys. Chem. 1995, 99, 10694.
doi: 10.1021/acs.energyfuels.7b03144 |
45 |
Zhang X. ; Jiang K. ; Feng C. ; Liu P. ; Zhang L. ; Kong J. ; Zhang T. ; Li Q. ; Fan S. Adv. Mater. 2006, 18, 1505.
doi: 10.1002/adma.200502528 |
46 |
Wang Y. ; Wei F. ; Luo G. ; Yu H. ; Gu G. Chem. Phys. Lett. 2002, 364, 568.
doi: 10.1016/S0009-2614(02)01384-2 |
47 |
Gui X. ; Wei J. ; Wang K. ; Cao A. ; Zhu H. ; Jia Y. ; Shu Q. ; Wu D. Adv. Mater. 2010, 22, 617.
doi: 10.1002/adma.200902986 |
48 |
Arnold M. S. ; Green A. A. ; Hulvat J. F. ; Stupp S. I. ; Hersam M. C. Nat. Nanotechnol. 2006, 1, 60.
doi: 10.1038/nnano.2006.52 |
49 |
Liu H. ; Nishide D. ; Tanaka T. ; Kataura H. Nat. Commun. 2011, 2, 309.
doi: 10.1038/ncomms1313 |
50 |
Khripin C. Y. ; Fagan J. A. ; Zheng M. J. Am. Chem. Soc. 2013, 135, 6822.
doi: 10.1021/ja402762e |
51 |
Lolli G. ; Zhang L. ; Balzano L. ; Sakulchaicharoen N. ; Tan Y. ; Resasco D. E. J. Phys. Chem. B 2006, 110, 2108.
doi: 10.1021/jp056095e |
52 |
Wang H. ; Wei L. ; Ren F. ; Wang Q. ; Pfefferle L. D. ; Haller G. L. ; Chen Y. ACS Nano 2012, 7, 614.
doi: 10.1021/nn3047633 |
53 |
Yang F. ; Wang X. ; Zhang D. ; Yang J. ; Luo D. ; Xu Z. ; Wei J. ; Wang J. Q. ; Xu Z. ; Peng F. ; et al Nature 2014, 510, 522.
doi: 10.1038/nature13434 |
54 |
Wang Z. ; Zhao Q. ; Tong L. ; Zhang J. J. Phys. Chem. C 2017, 121, 27655.
doi: 10.1021/acs.jpcc.7b06653 |
55 |
Zhou W. ; Zhan S. ; Ding L. ; Liu J. J. Am. Chem. Soc. 2012, 134, 14019.
doi: 10.1021/ja3038992 |
56 |
Zhang G. ; Qi P. ; Wang X. ; Lu Y. ; Li X. ; Tu R. ; Bangsaruntip S. ; Mann D. ; Zhang L. ; Dai H. Science 2006, 314, 974.
doi: 10.1126/science.1133781 |
57 |
Zhang S. ; Wang X. ; Yao F. ; He M. ; Lin D. ; Ma H. ; Sun Y. ; Zhao Q. ; Liu K. ; Ding F. ; et al Chem 2019, 5, 1182.
doi: 10.1016/j.chempr.2019.02.012 |
58 |
Zhang S. ; Tong L. ; Zhang J. Nat. Sci. Rev. 2017, 5, 310.
doi: 10.1093/nsr/nwx080 |
59 |
Ding F. ; Harutyunyan A. R. ; Yakobson B. I. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 2506.
doi: 10.1073/pnas.0811946106 |
60 |
Artyukhov V. I. ; Penev E. S. ; Yakobson B. I. Nat. Commun. 2014, 5, 4892.
doi: 10.1038/ncomms5892 |
61 |
Yao Y. ; Feng C. ; Zhang J. ; Liu Z. Nano Lett. 2009, 9, 1673.
doi: 10.1021/nl900207v |
62 |
Liu J. ; Wang C. ; Tu X. ; Liu B. ; Chen L. ; Zheng M. ; Zhou C. Nat. Commun. 2012, 3, 1199.
doi: 10.1038/ncomms2205 |
63 |
O'connell M. J. ; Bachilo S. M. ; Huffman C. B. ; Moore V. C. ; Strano M. S. ; Haroz E. H. ; Rialon1 K. L. ; Boul1 P. J. ; Noon W. H. ; Kittrell1 C. ; et al Science 2002, 297, 593.
doi: 10.1126/science.1072631 |
64 |
Ortiz-Acevedo A. ; Xie H. ; Zorbas V. ; Sampson W. M. ; Dalton A. B. ; Baughman R. H. ; Draper R. K. ; Musselman I. H. ; Dieckmann G. R. J. Am. Chem. Soc. 2005, 127, 9512.
doi: 10.1021/ja050507f |
65 |
Nish A. ; Hwang J. Y. ; Doig J. ; Nicholas R. J. Nat. Nanotechnol. 2007, 2, 640.
doi: 10.1038/nnano.2007.290 |
66 |
D Franklin A. D. Nature 2013, 498, 443.
doi: 10.1038/498443a |
67 |
Cao Q. ; Han S. J. ; Tulevski G. S. ; Zhu Y. ; Lu D. D. ; Haensch W. Nat. Nanotechnol. 2013, 8, 180.
doi: 10.1038/nnano.2012.257 |
68 |
Kuznetsov A. A. ; Fonseca A. F. ; Baughman R. H. ; Zakhidov A. A. ACS Nano 2011, 5, 985.
doi: 10.1021/nn102405u |
69 |
Liao Y. ; Jiang H. ; Wei N. ; Laiho P. ; Zhang Q. ; Khan S. A. ; Kauppinen E. I. J. Am. Chem. Soc. 2018, 140, 9797.
doi: 10.1021/jacs.8b05151 |
70 |
Shan C. ; Zhao W. ; Lu X. L. ; O'Brien D. J. ; Li Y. ; Cao Z. ; Suhr J. Nano Lett. 2013, 13, 5514.
doi: 10.1021/nl403109g |
71 |
Hough L. A. ; Islam M. F. ; Hammouda B. ; Yodh A. G. ; Heiney P. A. Nano Lett. 2006, 6, 313.
doi: 10.1021/nl051871f |
72 |
Kim K. H. ; Oh Y. ; Islam M. F. Adv. Funct. Mater. 2013, 23, 377.
doi: 10.1002/adfm.201201055 |
73 |
Du R. ; Wu J. ; Chen L. ; Huang H. ; Zhang X. ; Zhang J. Small 2014, 10, 1387.
doi: 10.1002/smll.201302649 |
74 |
Wei F. ; Zhang Q. ; Qian W. Z. ; Yu H. ; Wang Y. ; Luo G. H. ; Wang D. Z. Powder Technol. 2008, 183, 10.
doi: 10.1016/j.powtec.2007.11.025 |
75 |
Jia X. ; Wei F. Topics Curr. Chem. 2017, 375, 18.
doi: 10.1007/s41061-017-0102-2 |
76 |
He M. ; Magnin Y. ; Amara H. ; Jiang H. ; Cui H. ; Fossard F. ; Castan A. ; Kauppinen E. ; Loiseau A. ; Bichara C. Carbon 2017, 113, 231.
doi: 10.1016/j.carbon.2016.11.057 |
77 |
Magnin Y. ; Amara H. ; Ducastelle F. ; Loiseau A. ; Bichara C. Science 2018, 362, 212.
doi: 10.1126/science.aat6228 |
78 |
Hussain A. ; Liao Y. ; Zhang Q. ; Ding E. X. ; Laiho P. ; Ahmad S. ; Wei N. ; Tian Y. ; Jiang H. ; Kauppinen E. I. Nanoscale 2018, 10, 9752.
doi: 10.1039/C8NR00716K |
79 |
Wilder J. W. ; Venema L. C. ; Rinzler A. G. ; Smalley R. E. ; Dekker C. Nature 1998, 391, 59.
doi: 10.1038/34139 |
80 |
Hashimoto A. ; Suenaga K. ; Gloter A. ; Urita K. ; Iijima S. Nature 2004, 430, 870.
doi: 10.1038/nature02817 |
81 |
Bachilo S. M. ; Strano M. S. ; Kittrell C. ; Hauge R. H. ; Smalley R. E. ; Weisman R. B. Science 2002, 298, 2361.
doi: 10.1126/science.1078727 |
82 |
Araujo P. T. ; Jorio A. Phys. Status Solidi B 2008, 245, 2201.
doi: 10.1002/pssb.200879625 |
83 |
Joh D. Y. ; Herman L. H. ; Ju S. Y. ; Kinder J. ; Segal M. A. ; Johnson J. N. ; Chan G. ; Park J. Nano Lett. 2010, 1, 1.
doi: 10.1021/nl1012568 |
84 |
Tans S. J. ; Verschueren A. R. ; Dekker C. Nature 1998, 393, 49.
doi: 10.1038/29954 |
85 |
Appenzeller J. ; Lin Y. M. ; Knoch J. ; Avouris P. Phys. Rev. Lett. 2004, 93, 196805.
doi: 10.1103/PhysRevLett.93.196805 |
86 |
Shulaker M. M. ; Hills G. ; Patil N. ; Wei H. ; Chen H. Y. ; Wong H. S. P. ; Mitra S. Nature 2013, 501, 526.
doi: 10.1038/nature12502 |
[1] | 张城城, 吴之怡, 沈家辉, 何乐, 孙威. 硅纳米结构阵列:光热CO2催化的新兴平台[J]. 物理化学学报, 2024, 40(1): 2304004 - . |
[2] | 冀连连, 王现鹏, 张莹莹, 申学礼, 薛娣, 王璐, 王滋, 王文冲, 黄丽珍, 迟力峰. 有机-有机界面效应的原位及非原位研究[J]. 物理化学学报, 2024, 40(1): 2304002 - . |
[3] | Faizan Muhammad, 赵国琪, 张天旭, 王啸宇, 贺欣, 张立军. 空位有序双钙钛矿A2BX6的弹性和热电性质的第一性原理研究[J]. 物理化学学报, 2024, 40(1): 2303004 - . |
[4] | 王鹤然, 陈凯, 伏硕, 王晧暄, 袁加轩, 胡星奕, 许文娟, 密保秀. 三种同分异构的双苯并吩噻嗪材料的合成、理论计算及光物理性质[J]. 物理化学学报, 2024, 40(1): 2303047 - . |
[5] | 罗耀武, 王定胜. 单原子催化剂电子结构调控实现高效多相催化[J]. 物理化学学报, 2023, 39(9): 2212020 -0 . |
[6] | 高凤雨, 刘恒恒, 姚小龙, Sani Zaharaddeen, 唐晓龙, 罗宁, 易红宏, 赵顺征, 于庆君, 周远松. 球形表面富锰MnxCo3−xO4−ƞ尖晶石型催化剂选择性催化还原NOx研究[J]. 物理化学学报, 2023, 39(9): 2212003 -0 . |
[7] | 王宁, 李一, 崔乾, 孙晓玥, 胡悦, 罗运军, 杜然. 金属气凝胶:可控制备与应用展望[J]. 物理化学学报, 2023, 39(9): 2212014 -0 . |
[8] | 陈帅, 余创, 罗启悦, 魏超超, 李莉萍, 李广社, 程时杰, 谢佳. 卤化物固态电解质研究进展[J]. 物理化学学报, 2023, 39(8): 2210032 -0 . |
[9] | 梁秋菊, 常银霞, 梁朝伟, 祝浩雷, 郭子宾, 刘剑刚. 结晶动力学策略在非富勒烯体系太阳能电池形貌调控领域的应用[J]. 物理化学学报, 2023, 39(7): 2212006 -0 . |
[10] | 周文杰, 景启航, 李家馨, 陈颖芝, 郝国栋, 王鲁宁. 有机光催化剂用于太阳能水分解:分子水平和聚集体水平改性[J]. 物理化学学报, 2023, 39(5): 2211010 -0 . |
[11] | 唐甜蜜, 王振旅, 管景奇. 调控单位点M-N-C电催化剂的电子结构提升二氧化碳还原性能[J]. 物理化学学报, 2023, 39(4): 2208033 -0 . |
[12] | 齐亚娥, 夏永姚. 电解液调控策略提升水系锌离子电池正极材料电化学性能[J]. 物理化学学报, 2023, 39(2): 2205045 -0 . |
[13] | 张婧雯, 马华隆, 马军, 胡梅雪, 李启浩, 陈胜, 宁添姝, 葛创新, 刘晰, 肖丽, 庄林, 张熠霄, 陈立桅. 碱性聚合物电解质膜的表面锥形阵列结构提升燃料电池性能[J]. 物理化学学报, 2023, 39(2): 2111037 -0 . |
[14] | 王正慜, 洪庆玲, 王晓慧, 黄昊, 陈煜, 李淑妮. 氮掺杂石墨烯气凝胶锚定RuP纳米粒子用于水合肼氧化辅助产氢[J]. 物理化学学报, 2023, 39(12): 2303028 - . |
[15] | 郑书逸, 吴佳, 王可, 胡梦晨, 文欢, 尹诗斌. 钴掺杂电子调控Ni-Mo-O多孔纳米棒选择性氧化5-羟甲基糠醛耦合制氢[J]. 物理化学学报, 2023, 39(12): 2301032 - . |
|