Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (2): 1904056.doi: 10.3866/PKU.WHXB201904056
Special Issue: Supercapacitor
• Review • Previous Articles Next Articles
Di Tian,Xiaofeng Lu,Weimo Li,Yue Li,Ce Wang*()
Received:
2019-04-12
Accepted:
2019-05-16
Published:
2019-05-30
Contact:
Ce Wang
E-mail:cwang@jlu.edu.cn
Supported by:
Di Tian,Xiaofeng Lu,Weimo Li,Yue Li,Ce Wang. Research on Electrospun Nanofiber-Based Binder-Free Electrode Materials for Supercapacitors[J]. Acta Physico-Chimica Sinica 2020, 36(2), 1904056. doi: 10.3866/PKU.WHXB201904056
Fig 2
Activated porous carbon nanofibers. (a) SEM image of activated PCNF; (b) pore size distribution for PCNF and activated PCNF; cyclic voltammetry of solid electrolyte (c) PCNF and (d) activated PCNF device at various scan rates. Adapted with permission from Ref. 37, Copyright 2016, The Royal Society of Chemistry. "
Fig 3
Coal based ECNF/C composites. (a) Schematic illustration of the fabrication of coal based ECNF/C composites; (b) specific capacitance of three samples at different specific currents; (c) the cycle lifetime of coal based ECNF/C composites at 2 A g−1. Adapted with permission from Ref. 106, Copyright 2015, tThe Royal Society of Chemistry. "
Fig 4
ECNFs/Bi2O3 composites. (a) Schematic illustration for the fabrication of ESCNF@Bi2O3 negative electrode CF@NiCo2O4 positive electrode, and designed asymmetric supercapacitor; (b) TEM image of the ESCNF; SEM images of (c) ESCNF@Bi2O3-0.5, (d) ESCNF@Bi2O3-1 (the inset shows the high magnification), and (e) ESCNF@Bi2O3-2. Adapted with permission from Ref. 124, Copyright 2016, the Royal Society of Chemistry. "
Fig 5
Niobium carbide nanofiber derived composites. (a) SEM and TEM micrographs (inset) of NbC-CDC fibers synthesized by chlorine gas treatment for 3 h at 600 ℃; (b) SEM micrograph, TEM micrograph (inset, lower left corner), and selected area electron diffraction pattern (inset, upper right corner) of Nb2O5/C hybrid nanofibers synthetized at 850 ℃ in air; (c) isotherms from nitrogen gas sorption at −196 ℃; (d) full-cell measurements using cyclic voltammetry at 10 mV∙s−1; (e) capacity retention during galvanostatic charge/discharge cycling to 3.0 V cell voltage for full-cells or from 0 to 2 V vs. carbon for the half-cell configuration; (f) Ragone plot of full-cells. Adapted with permission from Ref. 142, Copyright 2016, The Royal Society of Chemistry. "
Fig 6
PANI based composite nanofibers (a) SEM image and (b) post-mortem electrode morphology of PANI based composites; (c) TEM image of PANI-CNT nanofiber; (d) CV curves at 50 mV∙s−1, (e) specific capacitance at different current densities, and (f) Nyquist plots of PANI based composites (red) and PANI-CNT (blue) nanofiber mats. Adapted with permission from Ref. 89, Copyright 2016, American Chemical Society. "
1 |
Lu X. ; Yu M. ; Wang G. ; Tong Y. ; Li Y. Energy Environ. Sci. 2012, 7, 2160.
doi: 10.1039/c4ee00960f |
2 |
Inagaki M. ; Konno H. ; Tanaike O. J. Power Sources 2010, 195, 7880.
doi: 10.1016/j.jpowsour.2010.06.036 |
3 |
Xiong G. ; Meng C. ; Reifenberger R. G. ; Irazoqui P. P. ; Fisher T. S. Electroanalysis 2014, 26, 30.
doi: 10.1002/elan.201300238 |
4 |
Yan J. ; Wang Q. ; Wei T. ; Fan Z. Adv. Energy Mater. 2014, 4, 1300816.
doi: 10.1002/aenm.201300816 |
5 |
Li D. Y. ; Zhang J. S. ; Wang Z. Y. ; Jin X. B. Acta Phys. -Chim. Sin. 2017, 33 (11), 2245.
doi: 10.3866/PKU.WHXB201705241 |
李道琰; 张基琛; 王志勇; 金先波. 物理化学学报, 2017, 33 (11), 2245.
doi: 10.3866/PKU.WHXB201705241 |
|
6 |
Lu X. ; Wang C. ; Favier F. ; Pinna N. Adv. Energy Mater. 2017, 7, 1601301.
doi: 10.1002/aenm.201601301 |
7 |
Lia X. ; Wei B. Nano Energy 2013, 2, 159.
doi: 10.1016/j.nanoen.2.012.09.008 |
8 |
Wentian G. ; Gleb Y. Wires Energy Environ 2014, 3, 424.
doi: 10.1002/wene.102 |
9 |
Wu Z. ; Zhang X. B. Acta Phys. -Chim. Sin. 2017, 33 (2), 305.
doi: 10.3866/PKU.WHXB201611012 |
吴中; 张新波. 物理化学学报, 2017, 33 (2), 305.
doi: 10.3866/PKU.WHXB201611012 |
|
10 |
Li X. Q. ; Chang L. ; Zhao S. L. ; Hao C. L. ; Lu C. G. ; Zhu Y. H. ; Tang Z. Y. Acta Phys. -Chim. Sin. 2017, 33 (1), 130.
doi: 10.3866/PKU.WHXB201609012 |
李雪芹; 常琳; 赵慎龙; 郝昌龙; 陆晨光; 朱以华; 唐智勇. 物理化学学报, 2017, 33 (1), 130.
doi: 10.3866/PKU.WHXB201609012 |
|
11 |
Zhu J. Y. ; Dong Y. ; Zhang S. ; Fan Z. Acta Phys. -Chim. Sin. 2019, 36, 1903052.
doi: 10.3866/PKU.WHXB201903052 |
朱家瑶; 董玥; 张苏; 范壮军. 物理化学学报, 2019, 36, 1903052.
doi: 10.3866/PKU.WHXB201903052 |
|
12 |
Thavasi V. ; Singh G. ; Ramakrishna S. Energy Environ. Sci. 2008, 1, 205.
doi: 10.1039/b809074m |
13 |
Guo Q. ; Zhou X. ; Li X. ; Chen S. ; Seema A. ; Greiner A. ; Hou H. J. Mater. Chem. 2009, 19, 2810.
doi: 10.1039/b820170f |
14 |
Peng X. ; Ye W. ; Ding Y. ; Jiang S. ; Hanif M. ; Liao X. ; Hou H. RSC Adv. 2014, 4, 42732.
doi: 10.1039/c4ra07632j |
15 |
Duan G. ; Zhang H. ; Jiang S. ; Xie M. ; Peng X. ; Chen S. ; Hanif M. ; Hou H. Mater. Lett. 2014, 122, 178.
doi: 10.1016/j.matlet.2014.02.023 |
16 |
Chen B. ; Qian H. ; Xu J. ; Qin L. ; Wu Q. ; Zheng M. ; Dong Q. J. Mater. Chem. A 2014, 2, 9345.
doi: 10.1039/c4ta01493f |
17 |
Ma L. ; Tian X. ; Xu X. ; Chang L. ; Xu L. Chem. Rev. 2014, 114, 11828.
doi: 10.1021/cr500177a |
18 |
Wang G. ; Wang H. ; Lu X. ; Ling Y. ; Yu M. ; Zhai T. ; Tong Y. ; Li Y. Adv. Mater. 2014, 26, 267.
doi: 10.1002/adma.201304756 |
19 |
Horng Y. ; Lu Y. ; Hsu Y. ; Chen C. ; Chen L. ; Chen K. J. Power Sources 2010, 195, 4418.
doi: 10.1016/j.jpowsour.2010.01.046 |
20 |
Li Y. ; Zhang P. ; Ouyang Z. ; Zhang M. ; Lin Z. ; Li J. ; Su Z. ; Wei G. Adv. Funct. Mater. 2016, 26, 2122.
doi: 10.1002/adfm.201504533 |
21 |
Zhang L. ; Ding Q. ; Huang Y. ; Gu H. ; Miao Y. ; Liu T. ACS Appl. Mater. Interfaces 2015, 7, 22669.
doi: 10.1021/acsami.5b07528 |
22 |
Li Y. ; Zhang M. ; Zhang X. ; Xie G. ; Su Z. ; Wei G. Nanomaterials 2015, 5, 1891.
doi: 10.3390/nano5041891 |
23 |
Liu T. ; Zhang F. ; Song Y. ; Li Y. J. Mater. Chem. A 2017, 5, 17705.
doi: 10.1039/c7ta05646j |
24 | Chen Z. X. ; Zheng B. Y. ; Li X. X. ; Fu M. L. ; Xie S. G. ; Deng C. ; Hu Y. H. Chem. Industry And Engineering Progress 2010, 29, 94. |
陈彰旭; 郑炳云; 李先学; 傅明连; 谢署光; 邓超; 胡衍华. 化工进展, 2010, 29, 94. | |
25 |
Liu Y. ; Goebl J. ; Yin Y. Chem. Soc. Rev. 2013, 42, 2610.
doi: 10.1039/c2cs35369e |
26 |
Liu H. ; Cao C. ; Wei F. ; Jiang Y. ; Sun Y. ; Huang P. ; Song W. J. Phys. Chem. C 2013, 117, 21426.
doi: 10.1021/jp4078807 |
27 |
Abeykoon N. C. ; Bonsoa J. S. ; Ferraris J. P. RSC Adv. 2015, 5, 19865.
doi: 10.1039/c4ra16594b |
28 |
Jo E. ; Yeo J. ; Kim D. K. ; Ohc J. S. ; Hong C. K. Polym. Int. 2014, 63, 1471.
doi: 10.1002/pi.4645 |
29 |
Hatori H. ; Kobayshi T. ; Hanzawa Y. ; Yamada Y. ; Iimura Y. ; Kimura T. ; Shiraishi M. J. Appl. Polymer Sci. 2001, 79, 836.
doi: 10.1002/1097-4628(20010131)79:5<836::AID-APP80>3.0.CO;2-1 |
30 |
Kim B. H. ; Yang K. S. ; Ferraris J. P. Electrochim. Acta 2012, 75, 325.
doi: 10.1016/j.electacta.2012.05.004 |
31 |
Zander N. E. ; Strawhecker K. E. ; Orlicki J. A. ; Rawlett A. M. ; Beebe Jr T. P. J. Phys. Chem. B 2011, 115, 12441.
doi: 10.1021/jp205577r |
32 |
Rao M. M. ; Liu J. S. ; Li W. S. ; Liang Y. ; Zhou D. Y. J. Membrane Sci. 2008, 322, 314.
doi: 10.1016/j.memsci.2008.06.004 |
33 |
Bing H. ; Wu Y. ; Zhou J. ; Ming L. ; Sun S. ; Li X. Atmospheric Environment 2014, 99, 425.
doi: 10.1016/j.atmosenv.2014.10.014 |
34 |
Park S. ; Jung H. ; Lee W. Electrochim. Acta 2013, 102, 423.
doi: 10.1016/j.electacta.2013.04.044 |
35 |
Joh H. ; Song H. K. ; Lee C. H. ; Yun J. M. ; Jo S. M. ; Lee S. ; Na S. I. ; Chien A. T. ; Kumar S. Carbon 2014, 70, 308.
doi: 10.1016/j.carbon.2013.12.069 |
36 |
Le T. H. ; Yang Y. ; Huang Z. ; Kang F. J. Power Sources 2015, 278, 683.
doi: 10.1016/j.jpowsour.2014.12.055 |
37 |
Lawrence D. W. ; Tran C. ; Mallajoysula A. T. ; Doorn S. K. ; Mohite A. ; Gupta G. ; Kalra V. J. Mater. Chem. A 2016, 4, 160.
doi: 10.1016/j.jpowsour.2014.12.055 |
38 |
Zeng Y. ; Li X. ; Jiang S. ; He S. ; Fang H. ; Hou H. Mater. Lett. 2015, 161, 587.
doi: 10.1016/j.matlet.2015.08.154 |
39 |
He G. ; Song Y. ; Chen S. ; Wang L. J. Mater. Sci. 2018, 53, 9721.
doi: 10.1007/s10853-018-2277-5 |
40 |
Zhang X. Q. ; Sun Q. ; Dong W. ; Li D. ; Lu A. H. ; Mu J. H. ; Li W. C. J. Mater. Chem. A 2013, 1, 9449.
doi: 10.1039/c3ta10660h |
41 |
Fan L. ; Yang L. ; Ni X. ; Han J. ; Guo R. ; Zhang C. Carbon 2016, 107, 629.
doi: 10.1016/j.carbon.2016.06.067 |
42 |
Wu X. ; Hong X. ; Luo Z. ; Hui K. S. ; Chen H. ; Wu J. ; Hui K. N. ; Li L. ; Nan J. ; Zhang Q. Electrochim. Acta 2013, 89, 400.
doi: 10.1016/j.electacta.2012.11.067 |
43 |
Kim C. ; Ngoc B. T. N. ; Yang K. S. ; Kojima M. ; Kim Y. A. ; Kim Y. J. ; Endo M. ; Yang S. C. Adv. Mater. 2007, 19, 2341.
doi: 10.1002/adma.200602184 |
44 |
Zhang L. ; Jiang Y. ; Wang L. ; Zhang C. ; Liu S. Electrochim. Acta 2016, 196, 189.
doi: 10.1016/j.electacta.2016.02.050 |
45 |
Gopalakrishnan A. ; Sahatiya P. ; Badhulika S. ChemElectroChem 2018, 5, 531.
doi: 10.1002/celc.201700962 |
46 |
Huang K. ; Yao Y. ; Yang X. ; Chen Z. ; Li M. Mater. Chem. Phys. 2016, 169, 1.
doi: 10.1016/j.matchemphys.2015.11.024 |
47 |
Jiang X. ; Qin T. ; Yang H. ; Liu D. ; He D. Electrochim. Acta 2017, 258, 1064.
doi: 10.1016/j.electacta.2017.11.159 |
48 |
Jayawickramage R. A. P. ; Ferraris J. P. Nanotechnology 2019, 30, 155402.
doi: 10.1088/1361-6528/aafe95 |
49 |
He Y. ; Wang L. ; Jia D. Electrochim. Acta 2016, 194, 239.
doi: 10.1016/j.electacta.2016.01.191 |
50 |
Kim C. ; Yang K. S. Appl. Phys. Lett. 2003, 83, 1216.
doi: 10.1063/1.1599963 |
51 |
Jayawickramage R. A. P. ; Ferraris J. P. Nanotechnology 2019, 30, 155402.
doi: 10.1088/1361-6528/aafe95 |
52 |
Zhi M. ; Liu S. ; Hong Z. ; Wu N. RSC Adv. 2014, 4, 43619.
doi: 10.1039/c4ra05512h |
53 |
Huang Y. ; Peng L. ; Liu Y. ; Zhao G. ; Chen J. Y. ; Yu G. ACS Appl. Mater. Interfaces 2016, 8, 15205.
doi: 10.1021/acsami.6b02214 |
54 |
Yadav P. ; Banerjee A. ; Unni S. ; Jog J. ; Kurungot S. ; Ogale S. ChemSusChem 2012, 5, 2159.
doi: 10.1002/cssc.201200421 |
55 |
Ra E. J. ; Raymundo-Piñero E. ; Lee Y. H. Béguin, F. Carbon 2009, 47, 2984.
doi: 10.1016/j.carbon.2009.06.051 |
56 |
Wang G. ; Pan C. ; Wang L. ; Dong Q. ; Yu C. ; Zhao Z. ; Qiu J. Electrochim. Acta 2012, 69, 65.
doi: 10.1016/j.electacta.2012.02.066 |
57 |
Kim C. ; Choi Y. O. ; Lee W. J. ; Yang K. S. Electrochim. Acta 2004, 50, 883.
doi: 10.1016/j.electacta.2004.02.072 |
58 |
Kim C. ; Park S. H. ; Lee W. J. ; Yang K. S. Electrochim. Acta 2004, 50, 877.
doi: 10.1016/j.electacta.2004.02.071 |
59 |
Chan K. J. Power Sources 2005, 142, 382.
doi: 10.1016/j.jpowsour.2004.11.013 |
60 |
Kim C. ; Yang K. S. Appl. Phys. Lett. 2003, 83, 1216.
doi: 10.1063/1.1599963 |
61 |
Zeng J. ; Cao Q. ; Wang X. ; Jing B. ; Peng X. ; Tang X. J. Solid State Electrochem. 2015, 19, 1591.
doi: 10.1007/s10008-015-2776-0 |
62 |
Lee D. ; Jung J. Y. ; Jung M. J. ; Lee Y. S. Chem. Eng. J. 2015, 26, 62.
doi: 10.1016/j.cej.2014.10.070 |
63 |
Kim C. ; Ngoc B. T. N. ; Yang K. S. ; Kojima M. ; Kim Y. A. ; Kim Y. G. ; Endo M. ; Yang S. C. Adv. Mater. 2007, 19, 2341.
doi: 10.1002/adma.200602184 |
64 |
Kim B. H. ; Yang K. S. J. Electroanal. Chem. 2014, 714, 92.
doi: 10.1016/j.jelechem.2013.12.019 |
65 |
Ma C. ; Li Y. ; Shi J. ; Song Y. ; Liu L. Chem. Eng. J. 2014, 249, 216.
doi: 10.1016/j.cej.2014.03.083 |
66 |
Bichat M. P. ; Pinero E. R. ; Beguin F. Carbon 2010, 48, 4351.
doi: 10.1016/j.carbon.2010.07.049 |
67 |
Ismagilov Z. R. ; Shalaginaa A. E. ; Podyachevaa O. Y. ; Ischenkoa A. V. ; Kibisa L. S. ; Boronina A. I. ; Chesalov Y. A. ; Kochubey D. I. ; Romanenkob A. I. ; Anikeevab O. B. ; et al Carbon 2009, 47, 1992.
doi: 10.1016/j.carbon.2009.02.034 |
68 |
Cheng Y. ; Huang L. ; Xiao X. ; Yao B. ; Yuan L. ; Li T. ; Hu Z. ; Wang B. ; Wan J. ; Zhou J. Nano Energy 2015, 15, 66.
doi: 10.1016/j.nanoen.2015.04.007 |
69 |
Su F. ; Poh C. K. ; Chen J. S. ; Xu G. ; Wang D. ; Li Q. ; Lin J. ; Lou X. W. Energy Environ. Sci. 2011, 4, 717.
doi: 10.1039/c0ee00277a |
70 |
Seredych M. ; Idrobo J. C. ; Bandosz T. J. J. Mater. Chem. A 2013, 1, 7059.
doi: 10.1039/c3ta10995j |
71 |
Kwon T. ; Nishihara H. ; Itoi H. ; Yang Q. H. ; Kyotani T. Langmuir 2009, 25, 11961.
doi: 10.1021/la901318d |
72 |
Shilpa ; Ashutosh S. RSC Adv. 2016, 6, 78528.
doi: 10.1039/c6ra17014e |
73 |
Bai Y. ; Huang Z. H. ; Kang F. Carbon 2014, 66, 705.
doi: 10.1016/j.carbon.2013.09.074 |
74 |
Shen C. ; Sun Y. ; Yao W. ; Lu Y. Polymer 2014, 55, 2817.
doi: 10.1016/j.polymer.2014.04.042 |
75 |
Tan Y. ; Xu C. ; Chen G. ; Liu Z. ; Ma M. ; Xie Q. ; Zheng N. ; Yao S. ACS Appl. Mater. Interfaces 2013, 5, 2241.
doi: 10.1021/am400001g |
76 |
Xiao Y. ; Sun P. ; Cao M. ACS Nano 2014, 8, 7846.
doi: 10.1021/nn501390j |
77 |
Nie G. ; Zhu Y. ; Tian D. ; Wang C. Chem. J. Chin. Univ. 2018, 7, 1349.
doi: 10.7503/cjcu20180195 |
乜广弟; 朱云; 田地; 王策. 高等学校化学学报, 2018, 7, 1349.
doi: 10.7503/cjcu20180195 |
|
78 |
Li X. ; Zhao Y. ; Bai Y. ; Zhao X. ; Wang R. ; Huang Y. ; Liang Q. ; Huang Z. Electrochim. Acta 2017, 230, 445.
doi: 10.1016/j.electacta.2017.02.030 |
79 |
Huang K. ; Li M. ; Chen Z. ; Yao Y. ; Yang X. Electrochim. Acta 2015, 158, 306.
doi: 10.1016/j.electacta.2015.01.122 |
80 |
Fan L. ; Yang L. ; Ni X. ; Han J. ; Guo R. ; Zhang C. Carbon 2016, 107, 629.
doi: 10.1016/j.carbon.2016.06.067 |
81 |
Mcheill R. ; Siudak R. ; Wardlaw J. H. ; Weiss D. E. Aust. J. Chem. 1963, 16, 1056.
doi: 10.1071/ch9631056 |
82 |
Huang W. S. ; Humphrey B. D. ; MacDiarmid A. G. J. Chem. Soc., Faraday Trans. 1 1986, 82, 2385.
doi: 10.1039/F19868202385 |
83 |
Qian R. ; Qiu J. Polymer Journal 1987, 19, 157.
doi: 10.1295/polymj.19.157 |
84 |
Waltman R. J. ; Diaz A. F. ; Bargon J. J. Phys. Chem. 1984, 88, 4343.
doi: 10.1002/chin.198501097 |
85 |
Mastragostino M. ; Arbizzani C. ; Soavi F. Solid State Ion. 2002, 148, 493.
doi: 10.1016/s0167-2738(02)00093-0 |
86 |
Sivakkumar S. J. Power Sources 2004, 137, 322.
doi: 10.1016/j.jpowsour.2004.05.060 |
87 |
Zhou X. ; Chen Q. ; Wang A. ; Xu J. ; Wu S. ; Shen J. ACS Appl. Mater. Interfaces 2016, 8, 3776.
doi: 10.1021/acsami.5b10196 |
88 |
Snook G.A. ; Kao P. ; Best A. S. J. Power Sources 2011, 196, 1.
doi: 10.1016/j.jpowsour.2010.06.084 |
89 |
Simotwo S. K. ; DelRe C. ; Kalra V. ACS Appl. Mater. Interfaces 2016, 8, 21261.
doi: 10.1021/acsami.6b03463 |
90 |
Zhuo L. ; Wu Y. ; Ming J. ; Wang L. ; Yu Y. ; Zhang X. ; Zhao F. J. Mater. Chem. A 2013, 1, 1141.
doi: 10.1039/c2ta00284a |
91 |
Zhi M. ; Xiang C. ; Li J. ; Li M. ; Wu N. Nanoscale 2013, 5, 72.
doi: 10.1039/c2nr32040a |
92 |
Tebyetekerwa M. ; Yang S. ; Peng S. ; Xu Z. ; Shao W. ; Pan D. ; Ramakrishna S. ; Zhu M. Electrochim. Acta 2017, 247, 400.
doi: 10.1016/j.electacta.2017.07.038 |
93 |
Shi H. H. ; Naguib H. E. Nanotechnology 2016, 27, 325402.
doi: 10.1088/0957-4484/27/32/325402 |
94 |
Dubal D. P. ; Gomez-Romero P. ; Sankapal B. R. ; Holze R. Nano Energy 2015, 11, 377.
doi: 10.1016/j.nanoen.2014.11.013 |
95 |
Li R. ; Li L. ; Han Y. ; Gai S. ; He F. ; Yang P. J. Mater. Chem. B 2014, 2, 2127.
doi: 10.1039/c3tb21718c |
96 |
Devan R. S. ; Patil R. A. ; Lin J. ; Ma Y. Adv. Funct. Mater. 2012, 22, 3326.
doi: 10.1002/adfm.201201008 |
97 |
Wei W. ; Cui X. ; Chen W. ; Ivey D. G. Chem. Soc. Rev. 2011, 40, 1697.
doi: 10.1039/c0cs00127a |
98 |
Dam D. T. ; Wang X. ; Lee J. M. ACS Appl. Mater. Interfaces 2014, 6, 8246.
doi: 10.1021/am500700x |
99 |
Guan B. ; Guo D. ; Hu L. ; Zhang G. ; Fu T. ; Ren W. ; Li J. ; Li Q. J. Mater. Chem. A 2014, 2, 16116.
doi: 10.1039/c4ta02378a |
100 |
Wang T. ; Zhao B. ; Jiang H. ; Yang H. ; Zhang K. ; Yuen M. M. F. ; Fu X. ; Sun R. ; Wong C. J. Mater. Chem. A 2015, 3, 23035.
doi: 10.1039/c5ta04705f |
101 |
Jiang H. ; Niu H. ; Yang X. ; Sun Z. ; Li F. ; Wang Q. ; Qu F. Chemistry 2018, 24, 10683.
doi: 10.1002/chem.201800461 |
102 |
Mohana Reddy A. L. ; Gowda S. R. ; Shaijumon M. M. ; Ajayan P. M. Adv. Mater. 2012, 24, 5045.
doi: 10.1002/adma.201104502 |
103 |
Gao Y. ; Presser V. ; Zhang L. ; Niu J. J. ; McDonough J. K. ; Pérez C. R. ; Lin H. ; Fong H. ; Gogotsi Y. J. Power Sources 2012, 21, 368.
doi: 10.1016/j.jpowsour.2011.10.128 |
104 |
Liu L. ; Niu Z. ; Chen J. Chem. Soc. Rev. 2016, 45, 4340.
doi: 10.1039/c6cs00041j |
105 |
Zhao X. ; Sanchez B. M. ; Dobson P. J. ; Grant P. S. Nanoscale 2011, 3, 839.
doi: 10.1039/c0nr00594k |
106 |
Guo M. ; Guo J. ; Jia D. ; Zhao H. ; Sun Z. ; Song X. ; Li Y. J. Mater. Chem. A 2015, 3, 21178.
doi: 10.1039/c5ta05743d |
107 |
Lai C. ; Zhou Z. ; Zhang L. ; Wang X. ; Zhou Q. ; Zhao Y. ; Wang Y. ; Wu X. ; Zhu Z. ; Fong H. J. Power Sources 2014, 247, 134.
doi: 10.1016/j.jpowsour.2013.08.082 |
108 |
Wang X. ; Zhang W. ; Chen M. ; Zhou X. Polymers 2018, 10, 1306.
doi: 10.3390/polym10121306 |
109 |
Zeiger M. ; Weingarth D. ; Presser V. ChemElectroChem 2015, 2, 1117.
doi: 10.1002/celc.201500130 |
110 |
Chen L. ; Li D. ; Chen L. ; Si P. ; Feng J. ; Zhang L. ; Li Y. ; Lou J. ; Ci L. Carbon 2018, 138, 264.
doi: 10.1016/j.carbon.2018.06.022 |
111 |
Chen L. ; Chen L. ; Ai Q. ; Li D. ; Si P. ; Feng J. ; Zhang L. ; Li Y. ; Lou J. ; Ci L. Chem. Eng. J. 2018, 334, 184.
doi: 10.1016/j.cej.2017.10.038 |
112 |
Simotwo S. K. ; Kalra V. Electrochimi. Acta 2018, 268, 131.
doi: 10.1016/j.electacta.2018.01.157 |
113 |
Tian D. ; Lu X. ; Nie G. ; Gao M. ; Song N. ; Wang C. Appl. Surf. Sci. 2018, 458, 389.
doi: 10.1016/j.apsusc.2018.07.103 |
114 |
Iqbal N. ; Wang X. ; Babar A. ; Yan J. ; Yu J. ; Park S. ; Ding B. Adv. Mater. Interfaces 2017, 4, 1700855.
doi: 10.1002/admi.201700855 |
115 |
Choudhury A. ; Dey B. ; Mahapatra S. S. ; Kim D. W. ; Yang K. S. ; Yang D. J. Nanotechnology 2018, 29, 165401.
doi: 10.1088/1361-6528/aaa7e3 |
116 |
Samuel E. ; Joshi B. ; Jo H. S. ; Kim Y. I. ; An S. ; Swihart M. T. ; Yun J. M. ; Kim K. ; Yoon S. S. Chem. Eng. J. 2017, 328, 446.
doi: 10.1016/j.cej.2017.07.063 |
117 |
Tian K. ; Wei L. ; Zhang X. ; Jin Y. ; Guo X. Mater. Today Energy 2017, 6, 27.
doi: 10.1016/j.mtener.2017.08.004 |
118 |
Huang G. ; Li C. ; Bai J. ; Sun X. ; Liang H. Int. J. Hydrogen Energy 2016, 41, 22144.
doi: 10.1016/j.ijhydene.2016.09.136 |
119 |
Ramadan M. ; Abdellah A. M. ; Mohamed S. G. ; Allam N. K. Sci. Rep. 2018, 8, 7988.
doi: 10.1038/s41598-018-26370-z |
120 |
Tang K ; Li Y. ; Li Y. ; Cao H. ; Zhang Z. ; Zhang Y. ; Yang J. Electrochim. Acta 2016, 209, 709.
doi: 10.1016/j.electacta.2016.05.051 |
121 |
Sun X. ; Li C. ; Huang G. ; Bai J. J. Mater. Sci. Mater. Electron. 2017, 28, 12448.
doi: 10.1007/s10854-017-7066-4 |
122 |
Kim C. ; Ngoc B. T. N. ; Yang K. S. ; Kojima M. ; Kim Y. A. ; Kim Y. J. ; Endo M. ; Yang S. C. Adv. Mater. 2017, 19, 2341.
doi: 10.1002/adma.200602184 |
123 |
Sun X. ; Li C. ; Bai J. J. Mater. Sci. Mater. Electron. 2018, 29, 19382.
doi: 10.1007/s10854-018-0067-0 |
124 |
Li L. ; Zhang X. ; Zhang Z. ; Zhang M. ; Cong L. ; Pan Y. ; Lin S. J. Mater. Chem. A 2016, 4, 16635.
doi: 10.1039/c6ta06755g |
125 |
Choudhury A. ; Kim J. ; Yang K. ; Yang D. Electrochimi. Acta 2016, 213, 400.
doi: 10.1016/j.electacta.2016.06.111 |
126 |
Ma X. ; Kolla P. ; Zhao Y. ; Smirnova A. L. ; Fong H. J. Power Sources 2016, 325, 541.
doi: 10.1016/j.jpowsour.2016.06.073 |
127 |
Lai C. ; Lo C. Electrochimi. Acta 2015, 174, 806.
doi: 10.1016/j.electacta.2015.06.077 |
128 |
Huang Y. ; Cui F. ; Zhao Y. ; Lian J. ; Bao J. ; Li H. J. Alloy. Compd. 2018, 783, 176.
doi: 10.1016/j.jallcom.2018.04.060 |
129 |
Tian X. ; Li X. ; Yang T. ; Wang K. ; Wang H. ; Song Y. ; Liu Z. ; Guo Q. Appl. Surf. Sci. 2018, 434, 49.
doi: 10.1016/j.apsusc.2017.09.153 |
130 |
Tian D. ; Lu X. ; Nie G. ; Gao M. ; Wang C. Inorg. Chem. Front. 2018, 5, 635.
doi: 10.1039/c7qi00696a |
131 |
Hosseini H. ; Shahrokhian S. Chem. Eng. J. 2018, 314, 10.
doi: 10.1016/j.cej.2018.02.019 |
132 |
Fan C. ; Ying Z. ; Zhang W. ; Ju T. ; Li B. J. Mater. Sci. Mater. Electron. 2018, 29, 6909.
doi: 10.1007/s10854-018-8677-0 |
133 |
Al-Rubaye S. ; Rajagopalan R. ; Dou S. ; Cheng Z. J. Mater. Chem. A 2017, 5, 18989.
doi: 10.1039/c7ta03251j |
134 |
Al-Rubaye S. ; Rajagopalan R. ; Dou S. X. ; Cheng Z. X. J. Mater. Chem. A 2017, 5, 18989.
doi: 10.1039/C7TA03251J |
135 |
Chen J. S. ; Guan C. ; Gui Y. ; Blackwood D. J. ACS Appl. Mater. Interfaces 2017, 9, 496.
doi: 10.1021/acsami.6b14746 |
136 |
Li B. ; Zheng M. ; Xue H. ; Pang H. ChemInform 2016, 3, 175.
doi: 10.1039/c5qi00187k |
137 |
Huang Y. ; Zhao Y. ; Bao J. ; Lian J. ; Cheng M. ; Li H. J. Alloy. Compd. 2019, 772, 337.
doi: 10.1016/j.jallcom.2018.08.212 |
138 |
Sami S. ; Siddiqui S. ; Feroze M. ; Chung C. Mater. Res. Express 2017, 4, 116309.
doi: 10.1088/2053-1591/aa985b |
139 |
Kumuthini R. ; Ramachandran R. ; Therese H. A. ; Wang F. J. Alloy. Compd. 2017, 705, 624.
doi: 10.1016/j.jallcom.2017.02.163 |
140 |
Huang K. ; Wang L. ; Liu Y. ; Liu Y. ; Wang H. ; Gan T. ; Wang L. Int. J. Hydrogen Energy 2013, 38, 17024.
doi: 10.1016/j.ijhydene.2013.08.112 |
141 |
Gao Y. ; Presser V. ; Zhang L. ; Niu J. ; McDonough J. ; Pérez C. ; Lin H. ; Fong H. ; Gogotsi Y. J. Power Sources 2012, 201, 368.
doi: 10.1016/j.jpowsour.2011.10.128 |
142 |
Tolosa A. ; Krüner B. ; Fleischmann S. ; Jäckel N. ; Zeiger M. ; Aslan M. ; Grobelsek I. ; Presser V. J. Mater. Chem. A 2016, 4, 16003.
doi: 10.1039/c6ta06224e |
[1] | Na Lu, Xuedong Jing, Yao Xu, Wei Lu, Kuichao Liu, Zhenyi Zhang. Effective Cascade Modulation of Charge-Carrier Kinetics in the Well-Designed Multi-Component Nanofiber System for Highly-Efficient Photocatalytic Hydrogen Generation [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2207045-0. |
[2] | Yanpeng Fu, Changbao Zhu. Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209002-0. |
[3] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[4] | Meihui Jiang, Lizhi Sheng, Chao Wang, Lili Jiang, Zhuangjun Fan. Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012085-. |
[5] | Yao Chen, Haoyang Dong, Yuanyuan Li, Jinping Liu. Recent Advances in 3D Array Anode Materials for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2007075-. |
[6] | Miao Wang, Hongning Zheng, Fei Xu. Collagen-like Peptide Self-Assembly via Phenyl Isocyanate Induction [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1911039-. |
[7] | Jiu Wang,Nanshi Wu,Tao Liu,Shaowen Cao,Jiaguo Yu. MnCo Oxides Supported on Carbon Fibers for High-Performance Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1907072-. |
[8] | Yongli Tong, Meizhen Dai, Lei Xing, Hengqi Liu, Wanting Sun, Xiang Wu. Asymmetric Hybrid Capacitor Based on NiCo2O4 Nanosheets Electrode [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1903046-. |
[9] | Jiayao Zhu, Yue Dong, Su Zhang, Zhuangjun Fan. Application of Carbon-/Graphene Quantum Dots for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903052-. |
[10] | Yi Wang,Wangchen Huo,Xiaoya Yuan,Yuxin Zhang. Composite of Manganese Dioxide and Two-dimensional Materials Applied to Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904007-. |
[11] | Wenyi Liu,Linpo Li,Qiuyue Gui,Bohua Deng,Yuanyuan Li,Jinping Liu. Novel Hybrid Supercapacitors Based on Nanoarray Electrodes [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904049-. |
[12] | Feng Wei,Honghui Bi,Shuai Jiao,Xiaojun He. Interconnected Graphene-like Nanosheets for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903043-. |
[13] | Nannan Guo,Su Zhang,Luxiang Wang,Dianzeng Jia. Application of Plant-Based Porous Carbon for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903055-. |
[14] | Liping Kang,Gaini Zhang,Yunlong Bai,Huanjing Wang,Zhibin Lei,Zonghuai Liu. Two-Dimensional Nanosheet Hole Strategy and Their Assembled Materials for Supercapacitor Application [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1905032-. |
[15] | Yao Chen,George Zheng Chen. New Precursors Derived Activated Carbon and Graphene for Aqueous Supercapacitors with Unequal Electrode Capacitances [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904025-. |
|