Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (2): 1905032.doi: 10.3866/PKU.WHXB201905032
Special Issue: Supercapacitor
• Review • Previous Articles Next Articles
Liping Kang,Gaini Zhang,Yunlong Bai,Huanjing Wang,Zhibin Lei,Zonghuai Liu*()
Received:
2019-05-07
Accepted:
2019-06-04
Published:
2019-06-10
Contact:
Zonghuai Liu
E-mail:zhliu@snnu.edu.cn
Supported by:
Liping Kang,Gaini Zhang,Yunlong Bai,Huanjing Wang,Zhibin Lei,Zonghuai Liu. Two-Dimensional Nanosheet Hole Strategy and Their Assembled Materials for Supercapacitor Application[J]. Acta Physico-Chimica Sinica 2020, 36(2), 1905032. doi: 10.3866/PKU.WHXB201905032
Table 1
Delamination of typical two layered compounds in liquid medium."
Two-dimensional materials | medium | Guest ions |
Layered titanium dioxide | Water | Tetrabutylamine ion |
Layered neobate | Water | Tetramethylamine ion |
Layered clay | Water | Chloride surfactant |
Layered manganese oxide | Water | Tetramethylamine ion |
Layered zirconium phosphate | N, N-Dimethylformamide | Organic amine |
Layered metal disulfide | Water, Alcohol | Lithium ion |
Layerd Mxene | Water, Base | Tetramethylamine ion |
Graphite oxide | Water | Tetraalkylamine ion |
Black phosphorus | Acetonitrile | Solvent molecules |
Layered hydrated hydroxide | Formamide | Amino acids |
Fig 3
TEM images: no holey treated MnO2nanosheets (a), holey MnO2 nanosheets treated for 6 h with low magnification (b) and high magnification (c, d), nitrogen adsorption-desorption isotherms (e) and cumulative pore volume (f) with inset showing the NLDFT pore size distribution curves of the MnO2 materials with different redox treatment time 35."
Fig 4
Electrochemical performance of the MnO2-0 and MnO2-6 electrodes and their assembled symmetrical supercapacitors 35. (a) CV curves at 10 mV?s?1, (b) charge/discharge curves, (c) electrochemical impedance spectra (inset: the high-frequency region), and (d) bode plots of the phase angle verses frequency of the MnO2//MnO2 and MnO2-6//MnO2-6 supercapacitors in a potential window of 0-1.0 V. "
Fig 7
Schematic preparation representation of HRGO film (above), Electrochemical characterization of HRGO-10 and RGO symmetrical supercapacitors with 6.0 mol?L?1 KOH as aqueous electrolyte in a potential window of 0–1.0 V: CV curves at 200 mV·s?1 and bode plots of phase angle versus frequency (below) 45."
Fig 8
SEM images (a, b) and TEM images (c, d) of graphene nanomesh with different magnifications, N2 adsorptiondesorption isotherms (e) of the obtained materials at different stages, and impedance phase angle versus frequency of different graphene nanomesh electrode in different electrolytes (f) 51."
Fig 10
Schematic of a fiber supercapacitor fabricated from two twined δ-MnO2(4.0)/HRGO fibers with polyelectrolyte, digital image (a), SEM image (b), digital images at straight status (c) and at bending status (d), Nyquist plots over the frequency range of 100 kHz–0.1 Hz (e), two energy storage textiles that have been woven from electrochromic fiber-shaped supercapacitors in series to light up a LED (f), and cycling performance curves of δ-MnO2(4.0)/HRGO fiber supercapacitor (g) 55."
Fig 11
The formation schematic illustration of HGPA and the corresponding digital photograph (above), FE-SEM images of PPy, HGO, and HGPA-0.75 (middle), and electrochemical performances of various electrodes in 1.0 mol?L?1 KOH electrolyte: capacitance retention at different current densities, Nyquist plots, and cycling stability at a scan rate of 50 mV·s?1 of PPy, HGA, HGPA-0.75 electrodes (below) 56."
1 |
Peng L. ; Fang Z. ; Zhu Y. ; Yan C. ; Yu G. Adv. Energy Mater. 2018, 8, 1702179.
doi: 10.1002/aenm.201702179 |
2 |
Wang Y. G. ; Song Y. F. ; Xia Y. Y. Chem. Soc. Rev. 2016, 45, 5925.
doi: 10.1039/C5CS00580A |
3 |
Yan J. ; Wang Q. ; Wei T. ; Fan Z. Adv. Energy Mater. 2014, 4, 1300816.
doi: 10.1002/aenm.201300816 |
4 |
Liu C. ; Li F. ; Ma L. P. ; Cheng H. M. Adv. Mater. 2010, 22, E28.
doi: 10.1002/adma.200903328 |
5 |
Chen Y. ; Zhang Z. L. ; Sui Z. J. ; Liu Z. T. ; Zhou J. H. ; Zhou X. G. Acta Phys. -Chim. Sin. 2015, 31, 1105.
doi: 10.3866/PKU.WHXB201504081 |
陈阳; 张梓澜; 隋志军; 刘芝婷; 周静红; 周兴贵. 物理化学学报, 2015, 31, 1105.
doi: 10.3866/PKU.WHXB201504081 |
|
6 |
Wang H. Y. ; Shi G. Q. Acta Phys. -Chim. Sin. 2018, 34, 22.
doi: 10.3866/PKU.WHXB2017201706302 |
王海燕; 石高全. 物理化学学报, 2018, 34, 22.
doi: 10.3866/PKU.WHXB2017201706302 |
|
7 |
Tan C. ; Lai Z. ; Zhang H. Adv. Mater. 2017, 29, 1701392.
doi: 10.1002/adma.201701392 |
8 |
Wang Q. ; Yan J. ; Fan Z. Energy Environ. Sci. 2016, 9, 729.
doi: 10.1039/C5EE03109E |
9 |
Lu X. H. ; Yu M. H. ; Wang G. M. ; Tong Y. X. ; Li Y. Energy Environ. Sci. 2014, 7, 2160.
doi: 10.1039/C4EE00960F |
10 |
Lee J. H. ; Park N. ; Kim B. G. ; Jung D. S. ; Im K. ; Hur J. ; Choi J. W. ACS Nano 2013, 7, 9366.
doi: 10.1021/nn4040734 |
11 |
Yao Y. ; Lee K. T. ; Sheng X. ; Batara N. A. ; Hong N. ; He J. ; Xu L. ; Hussain M. M. ; Atwater H. A. ; Lewis N. S. ; et al Adv. Energy Mate 2017, 7, 1601992.
doi: 10.1002/aenm.201601992 |
12 |
Fang Y. ; Lv Y. ; Che R. ; Wu H. ; Zhang X. ; Gu D. ; Zheng G. ; Zhao D. J. Am. Chem. Soc. 2013, 135, 1524.
doi: 10.1021/ja310849c |
13 |
Cohen-Tanugi D. ; Grossman J. C. Nano Lett. 2012, 12, 3602.
doi: 10.1021/nl3012853 |
14 |
Chae W. S. ; Gough D. V. ; Ham S. K. ; Robinson D. B. ; Braun P. V. ACS Appl. Mater. Interfaces 2012, 4, 3973.
doi: 10.1021/am300798j |
15 |
Pikul J. H. ; Zhang H. G. ; Cho J. ; Braun P. V. ; King W. P. Nat. Commun. 2013, 4, 1732.
doi: 10.1038/ncomms2747 |
16 |
Zhang Y. ; He K. ; Chang C. Z. ; Song C. L. ; Wang L. L. ; Chen X. ; Jia J. F. ; Fang Z. ; Dai X. ; et al Nat. Phys 2010, 6, 584.
doi: 10.1038/NPHYS1689 |
17 |
Ma R. ; Sasaki T. Adv. Mater. 2010, 22, 5082.
doi: 10.1002/adma.201001722 |
18 |
Sasaki T. ; Watanabe M. J. Am. Chem. Soc. 1998, 120, 4682.
doi: 10.1021/ja974262l |
19 |
Xuan J. ; Wang Z. ; Chen Y. ; Liang D. ; Cheng L. ; Yang X. ; Liu Z. ; Ma R. ; Sasaki T. ; Geng F. Angew. Chem. Int. Ed. 2016, 55, 14569.
doi: 10.1002/anie.201606643 |
20 |
Geng F. X. ; Ma R. Z. ; Nakamura A. ; Akatsuka K. ; Ebina Y. ; Yamauchi Y. ; Miyamoto N. ; Tateyama Y. ; Sasaki T. Nat. Commun. 2013, 4, 1632.
doi: 10.1038/ncomms2641 |
21 |
Norrish K. Discuss. Faraday Soc. 1954, 18, 120.
doi: 10.1039/DF9541800120 |
22 |
Hayashi S. ; Akiba E. Chem. Phys. Lett. 1994, 226, 495.
doi: 10.1016/0009-2614[94]00773-X |
23 |
Joensen P. ; Frindt R. F. ; Morrison S. R. Mater. Res. Bull. 1986, 21, 457.
doi: 10.1016/0025-5408[86]90011-5 |
24 |
Yuan H. ; Dubbink D. ; Besselink R. ; Elshof J. E. Ten. J. Angew. Chem. Int. Ed. 2015, 54, 9239.
doi: 10.1002/anie.201502539 |
25 |
Ebina Y. ; Sasaki T. ; Watanabe M. Solid State Ion. 2002, 151, 177.
doi: 10.1016/S0167-2738[02]00707-5 |
26 |
Machado J. ; Ravishankar N. ; Rajamathi M. Solid State Sci. 2010, 12, 1399.
doi: 10.1016/j.solidstatesciences.2010.05.017 |
27 |
Kai K. ; Yoshida Y. ; Kageyama H. ; Saito G. ; Ishigaki T. ; Furukawa Y. ; Kawamata J. J. Am. Chem. Soc. 2008, 130, 15938.
doi: 10.1021/ja804503f |
28 |
Alberti G. ; Cavalaglio S. ; Dionigi C. ; Marmottini F. Langmuir 2000, 16, 7663.
doi: 10.1021/la0006061 |
29 |
Tan C. ; Zhang H. Chem. Soc. Rev. 2015, 44, 2713.
doi: 10.1039/c4cs00182f |
30 |
Naguib M. ; Gogotsi Y. Acc. Chem. Res. 2015, 48, 128.
doi: 10.1021/ar500346b |
31 |
Liu Z. H. ; Wang Z. ; Yang X ; Kenta O Langmuir 20025, 18, 4926.
doi: 10.1021/la011677i |
32 |
Yan Z. ; He X. ; She L. ; Sun J. ; Jiang R. ; Xu H. ; Shi F. ; Lei Z. ; Liu Z. H. J. Materiomics 2018, 4, 129.
doi: 10.1016/j.jmat.2018.01.003 |
33 |
Hibino T. Chem. Mater. 2004, 16, 5482.
doi: 10.1021/cm048842a |
34 |
Li H. ; Jing L. ; Liu W. ; Lin J. ; Tay R. Y. ; Tsang S. H. ; Teo E. H. T. ACS Nano 2018, 12, 1262.
doi: 10.1021/acsnano.7b07444 |
35 |
Zhang G. ; Ren L. ; Yan Z. ; Kang L. ; Lei Z. ; Xu H. ; Shi F. ; Liu Z. H. Chem. Commun. 2017, 53, 2950.
doi: 10.1039/C6CC10250F |
36 |
Liu Z. H. ; Ooi K. ; Kanoh H. ; Tang W. ; Tomida T. Langmuir 2000, 16, 4154.
doi: 10.1021/la9913755 |
37 |
Zhang G. ; Ren L. ; Yan Z. ; Kang L. ; Lei Z. ; Xu H. ; Shi F. ; Liu Z. H. J. Mater. Chem. A 2015, 3, 14567.
doi: 10.1039/C5TA03326H |
38 |
Zhang L. L. ; Zhao X. ; Stoller M. D. ; Zhu Y. ; Ji H. ; Murali S. ; Wu Y. ; Perales S. ; Clevenger B. ; Ruoff R. S. Nano Lett. 2012, 12, 1806.
doi: 10.1021/nl203903z |
39 |
Barranco V. ; Lillo-Rodenas M. A. ; Linares-Solano A. ; Oya A. ; Pico F. ; Iba ez J. ; Agullo-Rueda F. ; Amarilla J. M. ; Rojo J. M. J. Phys. Chem. C 2010, 114, 10302.
doi: 10.1021/jp1021278 |
40 |
Zhu Y. ; Murali S. ; Stoller M. D. ; Ganesh K. J. ; Cai W. ; Ferreira P. J. ; Pirkle A. ; Wallace R. M. ; Cychosz K. A. ; Thommes M ; et al Science 2011, 332, 1537.
doi: 10.1126/cience.1200770 |
41 |
Sun X. X. ; Cheng P. ; Wang H. J. ; Xu H. ; Dang L. Q. ; Liu Z. H. ; Lei Z. B. Carbon 2015, 92, 10.
doi: 10.1016/j.carbon.2015.02.052 |
42 |
Xin Z. ; Hayner C. M. ; Kung M. C. ; Kung H. H. ACS Nano 2011, 5, 8739.
doi: 10.1021/nn202710s |
43 |
Wang X. ; Jiao L. ; Sheng K. ; Li C. ; Dai L. M. ; Shi G. Q. Sci. Rep. 2013, 3, 1996.
doi: 10.1038/srep01996 |
44 |
Xu Y. ; Lin Z. ; Zhong X. ; Huang X. ; Weiss N. O. ; Huang Y. ; Duan X. F. Nat.Commun. 2014, 5, 4554.
doi: 10.1038/ncomms5554 |
45 |
Bai Y. ; Yang X. ; He Y. ; Zhang J. ; Kang L. ; Xu H. ; Shi F. ; Lei Z. ; Liu Z. H. Electrochim. Acta 2016, 187, 543.
doi: 10.1016/j.electacta.2015.11.090 |
46 |
Wang Z. L. ; Xu D. ; Wang H. G. ; Wu Z. ; Zhang X. B ACS Nano 2013, 7 (2422)
doi: 10.1021/nn3057388 |
47 |
Ning G. ; Xu C. ; Mu L. ; Chen G. ; Wang G. ; Gao J. ; Fan Z. ; Qian W. ; Wei F. Chem. Commun. 2012, 48, 6815.
doi: 10.1039/C2CC31785K |
48 |
Jeon K. W. ; Zhang L. ; Choi S. ; Lee I. S. Small 2018, 14, 1802174.
doi: 10.1002/smll.201802174 |
49 |
Fan Z. ; Liu Y. ; Yan J. ; Ning G. ; Wang Q. ; Wei T. ; Zhi L. ; Wei F. Adv. Energy Mater. 2012, 2, 419.
doi: 10.1002/aenm.201100654 |
50 |
Zhu J. ; Sakaushi K. ; Clavel G. ; Shalom M. ; Antonietti M. ; Fellinger T. P. J. Am. Chem. Soc. 2015, 137, 5480.
doi: 10.1021/jacs.5b01072 |
51 |
Wang H. ; Sun X. ; Liu Z. H. ; Lei Z. Nanoscale 2014, 6, 6577.
doi: 10.1039/C4NR00538D |
52 |
Wang H. ; Zhi L. ; Liu K. ; Dang L. ; Liu Z. H. ; Lei Z. ; Yu C. ; Qiu J. Adv. Funct. Mater. 2015, 25, 5420.
doi: 10.1002/adfm.201502025 |
53 |
Huang J. ; Jin Z. ; Xu Z. L. ; Qin L. ; Huang H. ; Sadighi Z. ; Yao S. ; Cui J. ; Huang B. ; Kim J. K. Energy Storage Mater. 2017, 8, 110.
doi: 10.1016/j.ensm.2017.05.004 |
54 |
Peng L. ; Xiong P. ; Ma L. ; Yuan Y. ; Zhu Y. ; Chen D. ; Luo X. ; Lu J. ; Amine K. ; Yu G. Nat.Commun. 2017, 8, 15139.
doi: 10.1038/ncomms15139 |
55 |
Zhang J. ; Yang X. ; He Y. ; Bai Y. ; Kang L. ; Xu H. ; Shi F. ; Lei Z. ; Liu Z. H. J. Mater. Chem. A 2016, 4, 9088.
doi: 10.1039/C6TA02989B |
56 |
He Y. ; Bai Y. ; Yang X. ; Zhang J. ; Kang L. ; Xu H. ; Shi F. ; Lei Z. ; Liu Z. H. J. Power Sources 2016, 317, 10.
doi: 10.1016/j.jpowsour.2016.03.089 |
[1] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[2] | Meihui Jiang, Lizhi Sheng, Chao Wang, Lili Jiang, Zhuangjun Fan. Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012085-. |
[3] | Jiu Wang,Nanshi Wu,Tao Liu,Shaowen Cao,Jiaguo Yu. MnCo Oxides Supported on Carbon Fibers for High-Performance Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1907072-. |
[4] | Yongli Tong, Meizhen Dai, Lei Xing, Hengqi Liu, Wanting Sun, Xiang Wu. Asymmetric Hybrid Capacitor Based on NiCo2O4 Nanosheets Electrode [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1903046-. |
[5] | Jiayao Zhu, Yue Dong, Su Zhang, Zhuangjun Fan. Application of Carbon-/Graphene Quantum Dots for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903052-. |
[6] | Yi Wang,Wangchen Huo,Xiaoya Yuan,Yuxin Zhang. Composite of Manganese Dioxide and Two-dimensional Materials Applied to Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904007-. |
[7] | Wenyi Liu,Linpo Li,Qiuyue Gui,Bohua Deng,Yuanyuan Li,Jinping Liu. Novel Hybrid Supercapacitors Based on Nanoarray Electrodes [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904049-. |
[8] | Feng Wei,Honghui Bi,Shuai Jiao,Xiaojun He. Interconnected Graphene-like Nanosheets for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903043-. |
[9] | Di Tian,Xiaofeng Lu,Weimo Li,Yue Li,Ce Wang. Research on Electrospun Nanofiber-Based Binder-Free Electrode Materials for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904056-. |
[10] | Nannan Guo,Su Zhang,Luxiang Wang,Dianzeng Jia. Application of Plant-Based Porous Carbon for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903055-. |
[11] | Yao Chen,George Zheng Chen. New Precursors Derived Activated Carbon and Graphene for Aqueous Supercapacitors with Unequal Electrode Capacitances [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904025-. |
[12] | Kang YANG,Xiaorui SHUAI,Huachao YANG,Jianhua YAN,Kefa CEN. Electrochemical Performance of Activated Graphene Powder Supercapacitors Using a Room Temperature Ionic Liquid Electrolyte [J]. Acta Phys. -Chim. Sin., 2019, 35(7): 755-765. |
[13] | Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047. |
[14] | Hai-Yan WANG, Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion [J]. Acta Physico-Chimica Sinica, 2018, 34(1): 22-35. |
[15] | Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film [J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837. |
|