Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (4): 2007006.doi: 10.3866/PKU.WHXB202007006
Special Issue: Metal Halide Perovskite Optoelectronic Material and Device
• REVIEW • Previous Articles Next Articles
Haomiao Li1, Hua Dong1,2, Jingrui Li3, Zhaoxin Wu1,2,*()
Received:
2020-07-02
Accepted:
2020-08-03
Published:
2020-08-07
Contact:
Zhaoxin Wu
E-mail:zhaoxinwu@mail.xjtu.edu.cn
About author:
Zhaoxin Wu, Email: zhaoxinwu@mail.xjtu.edu.cnHaomiao Li, Hua Dong, Jingrui Li, Zhaoxin Wu. Recent Advances in Tin-Based Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin. 2021, 37(4), 2007006. doi: 10.3866/PKU.WHXB202007006
Fig 2
(a) Atomic structure diagram of MASn(I, Br)3; (b) unit cell of MASn(I, Br)3; (c) conductivity and Seebeck coefficient for a MASnI3 sample. (d) Absorption spectra of MASn(I, Br)3. (e) XRD patterns of MASn(I, Br)3. (a, b) Reproduced with permission 36, Copyright 2013, American Chemical Society. (c-e) Reproduced with permission 29, Copyright 2014, Nature Publishing Group. "
Fig 3
(a) Atomic structure diagram of FASn(I, Br)3; (b) unit cell of FASn(I, Br)3; (c) electronic absorption spectra of various Sn-based perovskites; (d) TGA and DSC data for MASnI3 and FASnI3. (e) Current of the MASnI3 and FASnI3 conductor structures. (a-c) Reproduced with permission 35, Copyright 2013, American Chemical Society. (d) Reproduced with permission 39, Copyright 2016, Wiley-VCH. (e) Reproduced with permission 41, Copyright 2016, Wiley-VCH. "
Fig 4
(a) A phase transition diagram for CsSnI3; (b) SEM of CsSnI3 PSCs; (c) scheme of the CsSnI3 perovskite solar cells; (d) J-V curve of CsSnI3 solar cell. (a) Reproduced with permission 44, Copyright 2019, Wiley-VCH. (b) Reproduced with permission 45, Copyright 2019, Progress in Chemistry. (c, d) Reproduced with permission 69. Copyright 2016, Wiley-VCH. "
Fig 7
(a) Schematic of VASP method; SEM images of (b) one-step MASnI3, (c) VASP MASnI3, (d) LT-VASP-MASnI3; SEM images of (e) the as-deposited SnI2 and (f) annealed SnI2; (g) J-V curves of devices prepared by different methods 56. Reproduced with permission, Copyright 2016, American Chemical Society. "
Fig 8
SEM images of FASnI3 films without pyrazine (a), with pyrazine (b); (c) SEM images of FASnI3 films with SnF2; (d) SEM images of FASnI3 films with SnF2 and TMA. (a, b) Reproduced with permission 61, Copyright 2016, American Chemical Society. (c, d) Reproduced with permission 63. Copyright 2017, Wiley-VCH. "
Fig 9
(a) Molecular formula of FA and PPA; (b) schematic representations ofcrystal structure of PPAxFA1-xSnI3; (c-h) SEM images and (i) statistics of grain size distribution of PPAxFA1-xSnI3 films with different PPAI contents; (j) photographs of FASnI3 films with and without PPAI during annealing at 100 ℃ 34. Reproduced with permission, Copyright 2019, Elsevier Inc. "
Fig 10
(a) SEM images of MASnI3 device with regular mesoporous structure. (b) The solar cell performance parameters extracted from J-V curves. (c) FASnI3 solar cells with regular planar structure. (d) J-V curves of the regular planar solar cells based on FASnI3 absorbers. (a, b) Reproduced with permission 64. Copyright 2014, The Royal Society of Chemistry. (c, d) Reproduced with permission 63. Copyright 2017, Wiley-VCH. "
1 |
Moller C. K. Nature 1958, 182, 1436.
doi: 10.1038/1821436a0 |
2 |
Weber D. Z. Naturforsch. B: Chem. Sci. 1978, 33b, 1443.
doi: 10.1515/znb-1978-1214 |
3 |
Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
doi: 10.1021/ja809598r |
4 |
Lee B. ; He J. ; Chang R. P. ; Kanatzidis M. G. Nature 2012, 485, 486.
doi: 10.1038/nature11067 |
5 |
Lee M. M. ; Teuscher J. ; Miyasaka T. ; Murakami T. N. ; Snaith H. J. Science 2012, 338, 643.
doi: 10.1126/science.1228604 |
6 |
Kim H. S. ; Lee C. R. ; Im J. H. ; Lee K. B. ; Moehl T. ; Marchioro A. ; Moon S. J. ; Humphry-Baker R. ; Yum J. H. ; Moser J. E. Sci Rep. 2012, 2, 591.
doi: 10.1038/srep00591 |
7 |
Zhou H. ; Chen Q. ; Li G. ; Luo S. ; Song T. B. ; Duan H. S. ; Hong Z. ; You J. ; Liu Y. ; Yang Y. Nature 2014, 345, 542.
doi: 10.1126/science.1254050 |
8 |
Burschka J. ; Pellet N. ; Moon S. J. ; Humphry-Baker R. ; Gao P. ; Nazeeruddin M. K. ; Grätzel M. Nature 2013, 499, 316.
doi: 10.1038/nature12340 |
9 |
Yang W. S. ; Noh J. H. ; Jeon N. J. ; Kim Y. C. ; Ryu S. ; Seo J. ; Seok S. I. Science 2015, 348, 1234.
doi: 10.1126/science.aaa9272 |
10 |
Abrusci A. ; Stranks S. D. ; Docampo P. ; Yip H. L. ; Jen A. K. Y. ; Snaith H. J. Nano Lett. 2013, 13, 3124.
doi: 10.1021/nl401044q |
11 |
Chen W. ; Wu Y. ; Yue Y. ; Liu J. ; Zhang W. ; Yang X. ; Chen H. ; Bi E. ; Ashraful I. ; Grätzel M. ; Han L. Science 2015, 350, 944.
doi: 10.1126/science.aad1015 |
12 |
Liu M. ; Johnston M. B. ; Snaith H. J. Nature 2013, 501, 395.
doi: 10.1038/nature12509 |
13 |
Li X. ; Bi D. ; Yi C. ; Décoppet J. D. ; Luo J. ; Zakeeruddin S. M. ; Hagfeldt A. ; Grätzel M. Science 2016, 353, 58.
doi: 10.1126/science.aaf8060 |
14 |
Correa-Baena J. P. ; Saliba M. ; Buonassisi T. ; Grätzel M. ; Abate A. ; Tress W. ; Hagfeldt A. Science 2017, 358, 739.
doi: 10.1126/science.aam6323 |
15 |
Yin W. J. ; Shi T. ; Yan Y. Adv. Mater. 2014, 26, 4653.
doi: 10.1002/adma.201306281 |
16 |
Shockley W. ; Queisser H.J. J. Appl. Phys. 1961, 32, 510.
doi: 10.1063/1.1736034 |
17 |
Saparov B. ; Sun J. P. ; Meng W. ; Xiao Z. ; Duan H. S. ; Gunawan O. ; Shin D. ; Hill I. G. ; Yan Y. ; Mitzi D. B. Chem. Mater. 2016, 28, 2315.
doi: 10.1021/acs.chemmater.6b00433 |
18 |
Mitzi D. B. J. Chem. Soc. Dalton Trans. 2001, 1, 1.
doi: 10.1039/B007070J |
19 |
Scaife D. E. ; Weller P. F. ; Fisher W. G. J. Solid State Chem. 1974, 9, 308.
doi: 10.1016/0022-4596(74)90088-7 |
20 |
Parry D. E. ; Tricker M. J. ; Donaldson J. D. J. Solid State Chem. 1979, 28, 401.
doi: 10.1016/0022-4596(79)90092-6 |
21 |
Clark S. J. ; Flint C. D. ; Donaldson J. D. J. Phys. Chem. Solids. 1981, 42, 133.
doi: 10.1016/0022-3697(81)90072-X |
22 |
Yamada K. ; Nose S. ; Umehara T. ; Okuda T. ; Ichiba S. Bull. Chem. Soc. Jpn. 1988, 61, 4265.
doi: 10.1246/bcsj.61.4265 |
23 |
Yamada K. ; Matsui T. ; Tsuritani T. ; Okuda T. ; Ichiba S. Z. Naturforsch. A: Phys. Sci. 1990, 45a, 307.
doi: 10.1515/zna-1990-3-416 |
24 |
Yamada K. ; Kuranaga Y. ; Ueda K. ; Goto S. ; Okuda T. ; Furukawa Y. Bull. Chem. Soc. Jpn. 1998, 71, 127.
doi: 10.1246/bcsj.71.127 |
25 |
Mitzi D. B. ; Feild C. ; Harrison W. ; Guloy A. Nature 1994, 369, 467.
doi: 10.1038/369467a0 |
26 |
Mitzi D. ; Wang S. ; Feild C. ; Chess C. ; Guloy A. Science 1995, 267, 1473.
doi: 10.1126/science.267.5203.1473 |
27 |
Mitzi D. B. ; Dimitrakopoulos C. D. ; Kosbar L. L. Chem. Mater. 2001, 13, 3728.
doi: 10.1021/cm010105g |
28 |
Chen Z. ; Wang J. J. ; Ren Y. ; Yu C. ; Shum K. Appl. Phys. Lett. 2012, 101, 093901.
doi: 10.1063/1.4748888 |
29 |
Hao F. ; Stoumpos C. C. ; Cao D. H. ; Chang R. P. ; Kanatzidis M. G. Nat. Photonics 2014, 8, 489.
doi: 10.1038/nphoton.2014.82 |
30 |
Lee S. J. ; Shin S. S. ; Kim Y. C. ; Kim D. ; Ahn T. K. ; Noh J. H. ; Seo J. ; Seok S. I. J. Am. Chem. Soc. 2016, 138, 3974.
doi: 10.1021/jacs.6b00142 |
31 |
Liao W. ; Zhao D. ; Yu Y. ; Grice C. R. ; Wang C. ; Cimaroli A. J. ; Schulz P. ; Meng W. ; Zhu K. ; Xiong R. G. Adv. Mater. 2016, 28, 9333.
doi: 10.1002/adma.201602992 |
32 |
Cao D. H. ; Stoumpos C. C. ; Yokoyama T. ; Logsdon J. L. ; Song T. B. ; Farha O. K. ; Wasielewski M. R. ; Hupp J. T. ; Kanatzidis M. G. ACS Energy Lett. 2017, 2, 982.
doi: 10.1021/acsenergylett.7b00202 |
33 |
Ke W. ; Stoumpos C. C. ; Spanopoulos I. ; Mao L. ; Chen M. ; Wasielewski M. R. ; Kanatzidis M. G. J. Am. Chem. Soc. 2017, 139, 14800.
doi: 10.1021/jacs.7b09018 |
34 |
Jiang X. ; Wang F. ; Wei Q. ; Li H. ; Shang Y. ; Zhou W. ; Wang C. ; Cheng P. ; Chen Q. ; Chen L. ; et al Nat. Commun. 2020, 11, 1.
doi: 10.1038/s41467-020-15078-2 |
35 |
Ran C. ; Gao W. ; Li J. ; Xi J. ; Li L. ; Dai J. ; Yang Y. ; Gao X. ; Dong H. ; Jiao B. ; et al Joule 2019, 3, 3072.
doi: 10.1016/j.joule.2019.08.023 |
36 |
Stoumpos C. C. ; Malliakas C. D. ; Kanatzidis M. G. Inorg. Chem. 2013, 52, 9019.
doi: 10.1021/ic401215x |
37 |
Hasegawa H. ; Kobayashi K. ; Takahashi Y. ; Harada J. ; Inabe T. J. Phys. Chem. C 2017, 5, 4048.
doi: 10.1039/C7TC00446J |
38 |
Zhang M. ; Lyu M. ; Yun J. H. ; Noori M. ; Zhou X. ; Cooling N. A. ; Wang Q. ; Yu H. ; Dastoor P. C. ; Wang L. Nano Res. 2016, 9, 1570.
doi: 10.1007/s12274-016-1051-8 |
39 |
Dang Y. ; Zhou Y. ; Liu X. ; Ju D. ; Xia S. ; Xia H. ; Tao X. Angew. Chem. Int. Ed. 2016, 55, 3447.
doi: 10.1002/anie.201511792 |
40 |
Koh T. M. ; Krishnamoorthy T. ; Yantara N. ; Shi C. ; Leong W. L. ; Boix P. P. ; Grimsdale A. C. ; Mhaisalkar S. G. ; Mathews N. Mathews, J. Mater. Chem. A 2015, 3, 14996.
doi: 10.1039/C5TA00190K |
41 |
Wang F. ; Ma J. ; Xie F. ; Li L. ; Chen J. ; Fan J. ; Zhao N. Adv. Funct. Mater. 2016, 26, 3417.
doi: 10.1002/adfm.201505127 |
42 |
Maughan A. E. ; Ganose A. M. ; Candia A. M. ; Granger J. T. ; Scanlon D. O. ; Neilson J. R. Chem. Mater. 2018, 30, 472.
doi: 10.1021/acs.chemmater.7b04516 |
43 |
Shi T. ; Zhang H. S. ; Meng W. ; Teng Q. ; Liu M. ; Yang X. ; Yan Y. ; Yip H. L. ; Zhao Y. J. J. Mater. Chem. A 2017, 5, 15124.
doi: 10.1039/C7TA02662E |
44 |
Jokar E. ; Chien C. H. ; Tsai C. M. ; Fathi A. ; Diau E. W. G. Adv. Mater. 2019, 31 (2), 1804835.
doi: 10.1002/adma.201804835 |
45 | Li X. Y. ; Zhou C. C. ; Wang Y. H. ; Ding F. F. ; Zhou H. W. ; Zhang X. X. Prog. Chem. 2019, 31 (6), 882. |
李晓茵; 周传聪; 王英华; 丁菲菲; 周华伟; 张宪玺. 化学进展, 2019, 31 (6), 882.
doi: 10.7536/PC181103 |
|
46 |
Liu C. ; Tu J. ; Hu X. ; Huang Z. ; Meng X. ; Yang J. ; Duan X. ; Tan L. ; Li Z. ; Chen Y. Adv. Funct. Mater. 2019, 29 (18), 1808059.
doi: 10.1002/adfm.201808059 |
47 |
Liu X. ; Yan K. ; Tan D. ; Liang X. ; Zhang H. ; Huang W. Acs Energy Lett. 2018, 3 (11), 2701.
doi: 10.1021/acsenergylett.8b01588 |
48 |
Shao S. ; Liu J. ; Portale G. ; Fang H. H. ; Blake G. R. ; ten Brink G. H. ; Koster L. J. A. ; Loi M. A. Adv. Energy Mater. 2018, 8 (4), 1702019.
doi: 10.1002/aenm.201702019 |
49 |
Shao S. ; Dong J. ; Duim H. ; Gert H. ; Blake G. R. ; Portale G. ; Loi M. A. Nano Energy 2019, 60, 810.
doi: 10.1016/j.nanoen.2019.04.040 |
50 |
Song T. B. ; Yokoyama T. ; Aramaki S. ; Kanatzidis M. G. Acs Energy Lett. 2017, 2 (4), 897.
doi: 10.1021/acsenergylett.7b00171 |
51 |
Stranks S. D. ; Nayak P. K. ; Zhang W. ; Stergiopoulos T. ; Snaith H. J. Angew. Chem. Int. Ed. 2015, 54, 3240.
doi: 10.1002/anie.201410214 |
52 |
He M. ; Zheng D. ; Wang M. ; Lin C. ; Lin Z. J. Mater. Chem. A 2014, 2, 5994.
doi: 10.1039/C3TA14160H |
53 |
Ke W. ; Fang G. ; Wan J. ; Tao H. ; Liu Q. ; Xiong L. ; Qin P. ; Wang J. ; Lei H. ; Yang G. ; et al Nat. Commun. 2015, 6, 6700.
doi: 10.1038/ncomms7700 |
54 |
Ke W. ; Fang G. ; Wang J. ; Qin P. ; Tao H. ; Lei H. ; Liu Q. ; Dai X. ; Zhao X. ACS Appl. Mater. Interfaces 2014, 6, 15959.
doi: 10.1021/am503728d |
55 |
Jeon N. J. ; Noh J. H. ; Kim Y. C. ; Yang W. S. ; Ryu S. ; Seok S. I. Nat. Mater. 2014, 13, 897.
doi: 10.1038/nmat4014 |
56 |
Yokoyama T. ; Cao D. H. ; Stoumpos C. C. ; Song T. B. ; Sato Y. ; Aramaki S. ; Kanatzidis M. G. J. Phys. Chem. Lett. 2016, 7, 776.
doi: 10.1021/acs.jpclett.6b00118 |
57 |
Hao F. ; Stoumpos C. C. ; Guo P. ; Zhou N. ; Marks T. J. ; Chang R. P. ; Kanatzidis M. G. J. Am. Chem. Soc. 2015, 137, 11445.
doi: 10.1021/jacs.5b06658 |
58 |
Liao W. ; Zhao D. ; Yu Y. ; Grice C. R. ; Wang C. ; Cimaroli A. J. ; Schulz P. ; Meng W. ; Zhu K. ; Xiong R. G. ; Yan Y. Adv. Mater. 2016, 28, 9333.
doi: 10.1021/jacs.5b06658 |
59 |
Ke W. ; Zhao D. ; Grice C. R. ; Cimaroli A. J. ; Fang G. ; Yan Y. J. Mater. Chem. A 2015, 3, 23888.
doi: 10.1039/C5TA07829F |
60 |
Kumar M. H. ; Dharani S. ; Leong W. L. ; Boix P. P. ; Prabhakar R.R. ; Baikie T. ; Shi C. ; Ding H. ; Ramesh R. ; Asta M. ; et al Adv. Mater. 2014, 26, 7122.
doi: 10.1002/adma.201401991 |
61 |
Lee S. J. ; Shin S. S. ; Kim Y. C. ; Kim D. ; Ahn T. K. ; Noh J. H. ; Seo J. ; Seok S. I. J. Am. Chem. Soc. 2016, 138, 3974.
doi: 10.1021/jacs.6b00142 |
62 |
Gupta S. ; Bendikov T. ; Hodes G. ; Cahen D. ACS Energy Lett. 2016, 1, 1028.
doi: 10.1021/acsenergylett.6b00402 |
63 |
Zhu Z. ; Chueh C. C. ; Li N. ; Mao C. ; Jen A. K. Adv. Mater. 2017, 30, 1703800.
doi: 10.1002/adma.201703800 |
64 |
Noel N. K. ; Stranks S. D. ; Abate A. ; Wehrenfennig C. ; Guarnera S. ; Haghighirad A. A. ; Sadhanala A. ; Eperon G. E. ; Pathak S. K. ; Johnston M. B. ; et al Energy Environ. Sci. 2014, 7, 3061.
doi: 10.1039/C4EE01076K |
65 |
Mei A. ; Li X. ; Liu L. ; Ku Z. ; Liu T. ; Rong Y. ; Xu M. ; Hu M. ; Chen J. ; Yang Y. ; et al Science 2014, 345, 295.
doi: 10.1126/science.1254763 |
66 |
Li W. ; Li J. ; Li J. ; Fan J. ; Mai Y. ; Wang L. J. Mater. Chem. A 2016, 4, 17104.
doi: 10.1039/C6TA08332C |
67 |
Correa-Baena J. P. ; Abate A. ; Saliba M. ; Tress W. ; JesperJacobsson T. ; Grätzel M. ; Hagfeldt A. Energy Environ. Sci. 2017, 10, 710.
doi: 10.1039/C6EE03397K |
68 |
Yan W. ; Ye S. ; Li Y. ; Sun W. ; Rao H. ; Liu Z. ; Bian Z. ; Huang C. Adv. Energy Mater. 2016, 6, 1600474.
doi: 10.1002/aenm.201600474 |
69 |
Wang N. ; Zhou Y. ; Ju M. G. ; Garces H. F. ; Ding T. ; Pang S. ; Zeng X. C. ; Padture N. P. ; Sun X. W. Adv. Energy Mater. 2016, 6, 1601130.
doi: 10.1002/aenm.201601130 |
70 |
Liao W. ; Zhao D. ; Yu Y. ; Grice C. R. ; Wang C. ; Cimaroli A. J. ; Schulz P. ; Meng W. ; Zhu K. ; Xiong R. G. ; Yan Y. Adv. Mater. 2016, 28, 9333.
doi: 10.1002/adma.201602992 |
71 |
Jiang X. ; Wang F. ; Wei Q. ; Li H. ; Shang Y. ; Zhou W. ; Wang C. ; Cheng P. ; Chen Q. ; Chen L. ; et al Nat. Commun. 2020, 11 (1), 1.
doi: 10.1038/s41467-020-15078-2 |
72 |
Chen S. ; Hou Y. ; Chen H. ; Richter M. ; Guo F. ; Kahmann S. ; Tang X. ; Stubhan T. ; Zhang H. ; Li N. ; et al Adv. Energy Mater. 2016, 6, 1600132.
doi: 10.1002/aenm.201600132 |
73 |
Marshall K. P. ; Walker M. ; Walton R. I. ; Hatton R. A. Nat. Energy 2016, 1, 16178.
doi: 10.1038/nenergy.2016.178 |
[1] | Qiuju Liang, Yinxia Chang, Chaowei Liang, Haolei Zhu, Zibin Guo, Jiangang Liu. Application of Crystallization Kinetics Strategy in Morphology Control of Solar Cells based on Nonfullerene Blends [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212006-0. |
[2] | Mingxu Zhang, Qisen Zhou, Xinyi Mei, Jingxuan Chen, Junming Qiu, Xiuzhi Li, Shuang Li, Mubing Yu, Chaochao Qin, Xiaoliang Zhang. Colloidal Quantum Dot Solids with a Diminished Epitaxial PbI2 Matrix for Efficient Infrared Solar Cells [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210002-0. |
[3] | Yongtao Wen, Jing Li, Xiaofeng Gao, Congcong Tian, Hao Zhu, Guomu Yu, Xiaoli Zhang, Hyesung Park, Fuzhi Huang. Two-Step Sequential Blade-Coating Large-Area FA-Based Perovskite Thin Film via a Controlled PbI2 Microstructure [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203048-0. |
[4] | Yue Lu, Yang Ge, Manling Sui. Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007088-. |
[5] | Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005007-. |
[6] | Wusong Zha, Lianping Zhang, Long Wen, Jiachen Kang, Qun Luo, Qin Chen, Shangfeng Yang, Chang-Qi Ma. Controllable Formation of PbI2 and PbI2(DMSO) Nano Domains in Perovskite Films through Precursor Solvent Engineering [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003022-. |
[7] | Xiaoyun Xu, Hongbo Wu, Shijie Liang, Zheng Tang, Mengyang Li, Jing Wang, Xiang Wang, Jin Wen, Erjun Zhou, Weiwei Li, Zaifei Ma. Quantum Efficiency and Voltage Losses in P3HT: Non-fullerene Solar Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201039-. |
[8] | Zihao Zang, Hansheng Li, Xianyuan Jiang, Zhijun Ning. Progress and Perspective of Tin Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007090-. |
[9] | Yuan Yin, Zhendong Guo, Gaoyuan Chen, Huifeng Zhang, Wan-Jian Yin. Recent Progress in Defect Tolerance and Defect Passivation in Halide Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008048-. |
[10] | Guiying Xu, Rongming Xue, Moyao Zhang, Yaowen Li, Yongfang Li. Synthesis of Pyrazine-based Hole Transport Layer and Its Application in p-i-n Planar Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008050-. |
[11] | Jun Ji, Xin Liu, Hao Huang, Haoran Jiang, Mingjun Duan, Benyu Liu, Peng Cui, Yingfeng Li, Meicheng Li. Recent Progress on Perovskite Homojunction Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008095-. |
[12] | Peiliang Lü, Caiyun Gao, Xiuhong Sun, Mingliang Sun, Zhipeng Shao, Shuping Pang. Synthesis of Cs-Rich CH(NH2)2)xCs1−xPbI3 Perovskite Films Using Additives with Low Sublimation Temperature [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009036-. |
[13] | Wentao Zhou, Yihua Chen, Huanping Zhou. Strategies to Improve the Stability of Perovskite-based Tandem Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009044-. |
[14] | Peiquan Song, Liqiang Xie, Lina Shen, Kaikai Liu, Yuming Liang, Kebin Lin, Jianxun Lu, Chengbo Tian, Zhanhua Wei. Stable Perovskite Solar Cells Using Compact Tin Oxide Layer Deposited through Electrophoresis [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004038-. |
[15] | Baiqiao Liu, Yunhua Xu, Dongdong Xia, Chengyi Xiao, Zhaofan Yang, Weiwei Li. Semitransparent Organic Solar Cells based on Non-Fullerene Electron Acceptors [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2009056-. |
|