Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (9): 2107006.doi: 10.3866/PKU.WHXB202107006
Special Issue: Carbonene Fiber and Smart Textile
• REVIEW • Previous Articles Next Articles
Yeye Wen1,2, Ming Ren3,4, Jiangtao Di3,4, Jin Zhang1,2,*()
Received:
2021-07-02
Accepted:
2021-07-28
Published:
2021-08-05
Contact:
Jin Zhang
E-mail:jinzhang@pku.edu.cn
About author:
Jin Zhang, Email: jinzhang@pku.edu.cnSupported by:
Yeye Wen, Ming Ren, Jiangtao Di, Jin Zhang. Application of Carbonene Materials for Artificial Muscles[J]. Acta Phys. -Chim. Sin. 2022, 38(9), 2107006. doi: 10.3866/PKU.WHXB202107006
Fig 1
Carbonene artificial muscle fibers with expansion/shrinkage and bending actuation. (a) Charge injection in a nanotube bundle (left) and a DNA/SWNT hybrid system with unbundled SWNT (right). (b) Plot of strain versus time of uncrosslinked and crosslinked DNA/SWNT hybrid fiber during cycling voltammetry. Adapted with permission from Ref. 33. Copyright 2008, Wiley-VCH. (c) Schematic illustration of positioned laser reduction on one side of a GO fiber. (d) Photomicrograph of the top surface of the as-prepared asymmetric G/GO fiber. (e) Representation of the possible bending of a G/GO fiber exposed to different relative humidities. (f–h) Photographs of a G/GO fiber (2 cm in length) under different relative humidities. Adapted with permission from Ref. 37. Copyright 2013, Wiley-VCH."
Fig 2
Carbonene artificial muscle fibers with torsional actuation. (a) Twisted structure of CNT yarns. (b) Schematic illustration of the effect of volume expansion on the twist and length of the yarn, the arrow indicates the untwisting direction of yarn. (c) A one end-tethered yarn configuration with a paddle located at the yarn end. (d) A two-end-tethered configuration with a force/distance transducer at the upper end that maintains constant tensile force on the yarn and measures the axial length change. (e) Photograph of prototype mixer that can be downscaled for a microfluidic circuit. Adapted with permission from Ref. 17. Copyright 2011, AAAS. (f) Plying anode and cathode yarns which infiltrated and coated with PVDF-co-HFP based TEABF4 solid gel electrolyte to make all-solid-state CNT torsional artificial muscle. Adapted with permission from Ref. 39. Copyright 2014, American Chemical Society. (g) Scheme of the torsional graphene-fiber motor (TGF) fabrication (top), SEM images of directly dried GO fiber (middle) and TGF with an applied 5000 turns per meter (down). (h) Schematic rotation of a TGF at the low (left) and high (right) humidity. Adapted with permission from Ref. 29. Copyright 2014, Wiley-VCH. (i) Plasma modification of CNT fiber with hierarchically helical channels, which responses to water and moisture. Adapted with permission from Ref. 40. Copyright 2015, Wiley-VCH. (j) Schematic illustration of the demonstrated use of torsional yarn muscle to precisely rotate mirrors without producing significant torsional oscillations. Adapted with permission from Ref. 41. Copyright 2014, Nature Publishing Group."
Fig 4
Mechanical properties, fabrication and tensile actuation of coiled fibers. (a) Singles and (b) two-ply of CNT yarn. (c) Percent change in diameter and length of CNT yarns with different structures as shown in (a) and (b). Symbols: blue circles, initial stretch; green circles, second stress increase; black squares, second stress decrease; red circles, stress increase until yarn rupture. Adapted with permission from Ref. 25. Copyright 2004, AAAS. (d) Fabrication of a coiled CNT fiber from a MWNT forest. Adapted with permission from Ref. 39. Copyright 2014, American Chemical Society. (e) Schematic illustration of the mechanism by which torsional fiber actuation leads to large-stroke tensile actuation for fibers with heterochiral (up) and homochiral (down) coiled structure. Adapted with permission from Ref. 48. Copyright 2014, AAAS."
Fig 5
Carbonene artificial muscle fibers with tensile actuation. (a) Illustration of a plied, coiled yarn muscle with attached weight for tensile actuation measurements, which had been over coated with electrolyte after plying. Adapted with permission from Ref. 39. Copyright 2014, American Chemical Society. (b) The stress dependence of tensile stroke in various electrolytes. Green, blue, and red lines and data points were used in this figure to describe data for 0.2 M TEA·BF4, 0.2 M TBA·PF6, and 0.2 M THA∙PF6 electrolytes, respectively. (c) Optical microscope images of parallel, two-ply coiled yarns before and after coating with gel electrolyte to make a gel electrolyte muscle. (d) The structure of braided muscle. Adapted with permission from Ref. 49. Copyright 2017, WILEY-VCH. Comparisons of (e) bipolar and (f) unipolar artificial muscles. Adapted with permission from Ref. 51. Copyright 2021, AAAS. (g) Schematic illustration of the change in structure of hybrid yarn artificial muscle due to water absorption. Adapted with permission from Ref. 57. Copyright 2016, Nature Publishing Group."
Fig 6
Carbonene artificial muscle fibers with sheath-core structures. (a) Artificial muscle with sheath-core structure was fabricated by coating a twisted CNT yarn with a polymer sheath, which could be further coiled to have diverse structure as illustrated in (b–d). (e) The surface of a twisted muscle, which was broken by untwisting in liquid N2, showing the distinct boundary between sheath polymer and CNT core. Scale bars, (b) to (e), 35, 200, 200 and 15 mm, respectively. Adapted with permission from Ref. 61. Copyright 2019, AAAS. (f) Preparation of the solid-state electrochemical yarn muscle which integrates two yarn electrodes twisted together and separated by ionic-liquid-infiltrated PVDF-HFP nanofiber separators. Adapted with permission from Ref. 62. Copyright 2021, Wiley-VCH."
Fig 7
Artificial muscle films based on carbonene materials. (a) Photograph of a rigidly end-supported 50-mm-long by 2-mm-wide CNT sheet strip (left) and CNT sheet strip expanded in width by applying 5 kV with respect to ground (right). Adapted with permission from Ref. 64. Copyright 2009, AAAS. (b) Schematic illustration of charge injection in a nanotube-based electromechanical actuator. (c) Schematic edge-view of an actuator operated in aqueous NaCl, which consists of two strips of SWNTs (shaded) that are laminated together with an intermediate layer of double-sided Scotch tape (white). Adapted with permission from Ref. 65. Copyright 1999, AAAS. (d) Schematic illustration of asymmetric plasma treatments of the graphene film with hexane and oxygen, and the wettability of corresponding surface. (e) Curvature change of the actuator as a function of applied CV potential. Adapted with permission from Ref. 66. Copyright 2010, American Chemical Society. (f) Fabrication scheme of the GO film responsive actuator with asymmetric structure. (g) SEM and (h) AFM images of smooth side (left) and rough side (right) of the GO film, respectively. Scale bar of SEM image: 5 μm. Adapted with permission from Ref. 74. Copyright 2016, American Chemical Society. (i) Optical photo series showing the moving process of the weightlifting walking robot. Adapted with permission from Ref. 79. Copyright 2015, American Chemical Society. (j) A demonstration of a gripper consisting of two actuators manipulating a small object. Adapted with permission from Ref. 81. Copyright 2011, American Chemical Society."
Fig 9
Mechanical enhancements and multi-functionalization of artificial muscles by carbonene materials. (a) Enhancement on tensile stress and modulus of PVA artificial muscle fibers by compositing GO and CNT. (b) Recovery torque generated by the coiled fibers that have been quenched without being hooked when they are reheated. Adapted with permission from Ref. 92. Copyright 2019, AAAS. (c) Measured and computed thickness strain of dielectric elastomer nanocomposites under applied electric fields. Adapted with permission from Ref. 93. Copyright 2017, AIP. (d) Schematic of the multidirectional actuator. (e–g) The coordinate of the tip of the actuator by applying the following inputs (left to right), X-Ch: Vx = Vxo sin(ω·t), Y-Ch: Vy = Vyo cos(ω·t); X-Ch: Vx = Vxo tringl(ω·t), Y-Ch: Vy = Vyo tringle(ω·t+π/2); X-Ch: Vx = Vxo sin(2ω·t), Y-Ch: Vy = Vyo cos(ω·t). Adapted with permission from Ref. 97. Copyright 2016, WILEY. (h) Schematic of graphic design and laser cutting on BP to make a T-shaped conductive band. (i) Three different ways of processing T-shaped BP electrodes and corresponding actuations. Adapted with permission from Ref. 98. Copyright 2015, American Chemical Society. (j) Wireless antenna sensing of light illumination intensity, wind speed and touch via near-field communication. Adapted with permission from Ref. 106. Copyright 2020, WILEY-VCH."
1 |
Mirvakili S. M. ; Hunter I. W. Adv. Mater. 2018, 30, 1704407.
doi: 10.1002/adma.201704407 |
2 | Uchino, K. Advanced Piezoelectric Materials: Science and Technology, Woodhead Publishing Limited: Cambridge, UK; 2010. |
3 |
Wang J. ; Gao D. ; Lee P. S. Adv. Mater. 2021, 33, e2003088.
doi: 10.1002/adma.202003088 |
4 |
Zou M. ; Li S. ; Hu X. ; Leng X. ; Wang R. ; Zhou X. ; Liu Z. F. Adv. Funct. Mater. 2021, 2007437.
doi: 10.1002/adfm.202007437 |
5 |
Foroughi J. ; Spinks G. Nanoscale Adv. 2019, 1, 4592.
doi: 10.1039/c9na00038k |
6 |
Wang W. ; Ahn S. H. Soft Rob. 2017, 4, 379.
doi: 10.1089/soro.2016.0081 |
7 |
Chen Y. ; Chen C. ; Rehman H. U. ; Zheng X. ; Li H. ; Liu H. ; Hedenqvist M. S. Molecules 2020, 25, 4246.
doi: 10.3390/molecules25184246 |
8 |
Qiu Y. ; Zhang E. ; Plamthottam R. ; Pei Q. Acc. Chem. Res. 2019, 52, 316.
doi: 10.1021/acs.accounts.8b00516 |
9 |
Chen Z. Robot. Biomim. 2017, 4, 24.
doi: 10.1186/s40638-017-0081-3 |
10 |
Smela E. Adv. Mater. 2003, 15, 481.
doi: 10.1002/adma.200390113 |
11 |
Mirfakhrai T. ; Madden J. D. W. ; Baughman R. H. Mater. Today 2007, 10, 30.
doi: 10.1016/s1369-7021(07)70048-2 |
12 |
Yin Z. ; Shi S. ; Liang X. ; Zhang M. ; Zheng Q. ; Zhang Y. Adv. Fiber Mater. 2019, 1, 197.
doi: 10.1007/s42765-019-00021-y |
13 |
Jia T. ; Wang Y. ; Dou Y. ; Li Y. ; de Andrade M. J. ; Wang R. ; Fang S. ; Li J. ; Yu Z. ; Qiao R. ; et al Adv. Funct. Mater. 2019, 29, 1808241.
doi: 10.1002/adfm.201808241 |
14 |
Wang Y. ; Wang Z. ; Lu Z. ; Jung de Andrade M. ; Fang S. ; Zhang Z. ; Wu J. ; Baughman R. H. ACS Appl. Mater. Interfaces 2021, 13, 6642.
doi: 10.1021/acsami.0c20456 |
15 | Wang Y. L. ; Di J. T. ; Li Q. W. Mater. Rep. 2021, 35, 1183. |
王玉莲; 邸江涛; 李清文. 材料导报, 2021, 35, 1183.
doi: 10.11896/cldb.20030153 |
|
16 |
Kong L. ; Chen W. Adv. Mater. 2014, 26, 1025.
doi: 10.1002/adma.201303432 |
17 |
Foroughi J. ; Spinks G. M. ; Wallace G. G. ; Oh J. ; Kozlov M. E. ; Fang S. L. ; Mirfakhrai T. ; Madden J. D. W. ; Shin M. K. ; Kim S. J. ; et al Science 2011, 334, 494.
doi: 10.1126/science.1211220 |
18 | Zhang S. C. ; Zhang N. ; Zhang J. Acta Phys. -Chim. Sin. 2020, 36, 1907021. |
张树辰; 张娜; 张锦. 物理化学学报, 2020, 36, 1907021.
doi: 10.3866/PKU.WHXB201907021 |
|
19 |
Plisko T. V. ; Bildyukevich A. V. Colloid. Polym. Sci. 2014, 292, 2571.
doi: 10.1007/s00396-014-3305-x |
20 | Jian M. Q. ; Zhang Y. Y. ; Liu Z. F. Acta Phys. -Chim. Sin. 2022, 38, 2007093. |
蹇木强; 张莹莹; 刘忠范. 物理化学学报, 2022, 38, 2007093.
doi: 10.3866/PKU.WHXB202007093 |
|
21 |
Stoychev G. V. ; Ionov L. ACS Appl. Mater. Interfaces 2016, 8, 24281.
doi: 10.1021/acsami.6b07374 |
22 |
Di J. ; Zhang X. ; Yong Z. ; Zhang Y. ; Li D. ; Li R. ; Li Q. Adv. Mater. 2016, 28, 10529.
doi: 10.1002/adma.201601186 |
23 |
Lima M. D. ; Li N. ; Jung de Andrade M. ; Fang S. ; Oh J. ; Spinks G. M. ; Kozlov M. E. ; Haines C. S. ; Suh D. ; Foroughi J. ; et al Science 2012, 338, 928.
doi: 10.1126/science.1226762 |
24 |
Jiang K. L. ; Li Q. Q. ; Fan S. S. Nature 2002, 419, 801.
doi: 10.1038/419801a |
25 |
Zhang M. ; Atkinson K. R. ; Baughman R. H. Science 2004, 306, 1358.
doi: 10.1126/science.1104276 |
26 |
Zhang X. ; Lu W. ; Zhou G. ; Li Q. Adv. Mater. 2020, 32, 1902028.
doi: 10.1002/adma.201902028 |
27 |
Xu Z. ; Gao C. Nat. Commun. 2011, 2, 571.
doi: 10.1038/ncomms1583 |
28 | Xia Z. ; Shao Y. L. Acta Phys. -Chim. Sin. 2022, 38, 2103046. |
夏洲; 邵元龙. 物理化学学报, 2022, 38, 2103046.
doi: 10.3866/PKU.WHXB202103046 |
|
29 |
Cheng H. ; Hu Y. ; Zhao F. ; Dong Z. ; Wang Y. ; Chen N. ; Zhang Z. ; Qu L. Adv. Mater. 2014, 26, 2909.
doi: 10.1002/adma.201305708 |
30 |
Janas D. ; Koziol K. K. Nanoscale 2016, 8, 19475.
doi: 10.1039/c6nr07549e |
31 |
Guo S. ; Dong S. Chem. Soc. Rev. 2011, 40, 2644.
doi: 10.1039/c0cs00079e |
32 |
Munoz E. ; Dalton A. B. ; Collins S. ; Kozlov M. ; Razal J. ; Coleman J. N. ; Kim B. G. ; Ebron V. H. ; Selvidge M. ; Ferraris J. P. ; et al Adv. Eng. Mater. 2004, 6, 801.
doi: 10.1002/adem.200400092 |
33 |
Shin S. R. ; Lee C. K. ; So I. ; Jeon J. H. ; Kang T. M. ; Kee C. ; Kim S. I. ; Spinks G. M. ; Wallace G. G. ; Kim S. J. Adv. Mater. 2008, 20, 466.
doi: 10.1002/adma.200701102 |
34 |
Lee S. H. ; Lee C. K. ; Shin S. R. ; Gu B. K. ; Kim S. I. ; Kang T. M. ; Kim S. J. Sens. Actuators B-Chem. 2010, 145, 89.
doi: 10.1016/j.snb.2009.11.043 |
35 |
Spinks G. M. ; Mottaghitalab V. ; Bahrami-Saniani M. ; Whitten P. G. ; Wallace G. G. Adv. Mater. 2006, 18, 637.
doi: 10.1002/adma.200502366 |
36 |
Plaado M. ; Kaasik F. ; Valner R. ; Lust E. ; Saar R. ; Saal K. ; Peikolainen A. L. ; Aabloo A. ; Kiefer R. Carbon 2015, 94, 911.
doi: 10.1016/j.carbon.2015.07.077 |
37 |
Cheng H. ; Liu J. ; Zhao Y. ; Hu C. ; Zhang Z. ; Chen N. ; Jiang L. ; Qu L. Angew. Chem. Int. Ed. 2013, 52, 10482.
doi: 10.1002/anie.201304358 |
38 |
Wang Y. ; Bian K. ; Hu C. ; Zhang Z. ; Chen N. ; Zhang H. ; Qu L. Electrochem. Commun. 2013, 35, 49.
doi: 10.1016/j.elecom.2013.07.044 |
39 |
Lee J. A. ; Kim Y. T. ; Spinks G. M. ; Suh D. ; Lepro X. ; Lima M. D. ; Baughman R. H. ; Kim S. J. Nano Lett. 2014, 14, 2664.
doi: 10.1021/nl500526r |
40 |
He S. ; Chen P. ; Qiu L. ; Wang B. ; Sun X. ; Xu Y. ; Peng H. Angew. Chem. Int. Ed. 2015, 54, 14880.
doi: 10.1002/anie.201507108 |
41 |
Chun K. Y. ; Hyeong Kim S. ; Kyoon Shin M. ; Hoon Kwon C. ; Park J. ; Tae Kim Y. ; Spinks G. M. ; Lima M. D. ; Haines C. S. ; Baughman R. H. ; et al Nat. Commun. 2014, 5, 3322.
doi: 10.1038/ncomms4322 |
42 |
Shi Q. ; Li J. ; Hou C. ; Shao Y. ; Zhang Q. ; Li Y. ; Wang H. Chem. Commun. 2017, 53, 11118.
doi: 10.1039/c7cc03408c |
43 |
Wang W. ; Xiang C. ; Sun D. ; Li M. ; Yan K. ; Wang D. ACS Appl. Mater. Interfaces 2019, 11, 21926.
doi: 10.1021/acsami.9b05136 |
44 |
Lee S. H. ; Kim T. H. ; Lima M. D. ; Baughman R. H. ; Kim S. J. Nanoscale 2016, 8, 3248.
doi: 10.1039/c5nr07195j |
45 |
Gu X. ; Fan Q. ; Yang F. ; Cai L. ; Zhang N. ; Zhou W. ; Zhou W. ; Xie S. Nanoscale 2016, 8, 17881.
doi: 10.1039/c6nr06185k |
46 |
Kim H. ; Moon J. H. ; Mun T. J. ; Park T. G. ; Spinks G. M. ; Wallace G. G. ; Kim S. J. ACS Appl. Mater. Interfaces 2018, 10, 32760.
doi: 10.1021/acsami.8b12426 |
47 |
Lima M. D. ; Fang S. L. ; Lepro X. ; Lewis C. ; Ovalle-Robles R. ; Carretero-Gonzalez J. ; Castillo-Martinez E. ; Kozlov M. E. ; Oh J. Y. ; Rawat N. ; et al Science 2011, 331, 51.
doi: 10.1126/science.1195912 |
48 |
Haines C. S. ; Lima M. D. ; Li N. ; Spinks G. M. ; Foroughi J. ; Madden J. D. W. ; Kim S. H. ; Fang S. ; de Andrade M. J. ; Goktepe F. ; et al Science 2014, 343, 868.
doi: 10.1126/science.1246906 |
49 |
Lee J. A. ; Li N. ; Haines C. S. ; Kim K. J. ; Lepro X. ; Ovalle-Robles R. ; Kim S. J. ; Baughman R. H. Adv. Mater. 2017, 29, 1700870.
doi: 10.1002/adma.201700870 |
50 |
Qiao J. ; Di J. ; Zhou S. ; Jin K. ; Zeng S. ; Li N. ; Fang S. ; Song Y. ; Li M. ; Baughman R. H. ; Li Q. Small 2018, 14, 1801883.
doi: 10.1002/smll.201801883 |
51 |
Chu H. ; Hu X. ; Wang Z. ; Mu J. ; Li N. ; Zhou X. ; Fang S. ; Haines C. S. ; Park J. W. ; Qin S. ; et al Science 2021, 371, 494.
doi: 10.1126/science.abc4538 |
52 |
Chen P. N. ; Xu Y. F. ; He S. S. ; Sun X. M. ; Pan S. W. ; Deng J. ; Chen D. Y. ; Peng H. S. Nat. Nanotechnol. 2015, 10, 1077.
doi: 10.1038/nnano.2015.198 |
53 |
Hyeon J. S. ; Park J. W. ; Baughman R. H. ; Kim S. J. Sens Actuators B-Chem. 2019, 286, 237.
doi: 10.1016/j.snb.2019.01.140 |
54 |
Sun Y. ; Wang Y. ; Hua C. ; Ge Y. ; Hou S. ; Shang Y. ; Cao A. Carbon 2018, 132, 394.
doi: 10.1016/j.carbon.2018.02.086 |
55 |
Lima M. D. ; Hussain M. W. ; Spinks G. M. ; Naficy S. ; Hagenasr D. ; Bykova J. S. ; Tolly D. ; Baughman R. H. Small 2015, 11, 3113.
doi: 10.1002/smll.201500424 |
56 |
Jin K. ; Zhang S. ; Zhou S. ; Qiao J. ; Song Y. ; Di J. ; Zhang D. ; Li Q. Nanoscale 2018, 10, 8180.
doi: 10.1039/c8nr01300d |
57 |
Kim S. H. ; Kwon C. H. ; Park K. ; Mun T. J. ; Lepro X. ; Baughman R. H. ; Spinks G. M. ; Kim S. J. Sci. Rep. 2016, 6, 23016.
doi: 10.1038/srep23016 |
58 |
Jeong J. H. ; Mun T. J. ; Kim H. ; Moon J. H. ; Lee D. W. ; Baughman R. H. ; Kim S. J. Nanoscale Adv. 2019, 1, 965.
doi: 10.1039/c8na00204e |
59 |
Song Y. ; Zhou S. ; Jin K. ; Qiao J. ; Li D. ; Xu C. ; Hu D. ; Di J. ; Li M. ; Zhang Z. ; et al Nanoscale 2018, 10, 4077.
doi: 10.1039/c7nr08595h |
60 |
Xu L. ; Peng Q. ; Zhu Y. ; Zhao X. ; Yang M. ; Wang S. ; Xue F. ; Yuan Y. ; Lin Z. ; Xu F. ; et al Nanoscale 2019, 11, 8124.
doi: 10.1039/c9nr00611g |
61 |
Mu J. ; de Andrade M. J. ; Fang S. ; Wang X. ; Gao E. ; Li N. ; Kim S. H. ; Wang H. ; Hou C. ; Zhang Q. ; et al Science 2019, 365, 150.
doi: 10.1126/science.aaw2403 |
62 |
Ren M. ; Qiao J. ; Wang Y. ; Wu K. ; Dong L. ; Shen X. ; Zhang H. ; Yang W. ; Wu Y. ; Yong Z. ; et al Small 2021, 17, e2006181.
doi: 10.1002/smll.202006181 |
63 |
Wang Y. ; Qiao J. ; Wu K. ; Yang W. ; Ren M. ; Dong L. ; Zhou Y. ; Wu Y. ; Wang X. ; Yong Z. ; et al Mater. Horiz. 2020, 7, 304.
doi: 10.1039/d0mh01352h |
64 |
Aliev A. E. ; Oh J. ; Kozlov M. E. ; Kuznetsov A. A. ; Fang S. ; Fonseca A. F. ; Ovalle R. ; Lima M. D. ; Haque M. H. ; Gartstein Y. N. ; et al Science 2009, 323, 1575.
doi: 10.1126/science.1168312 |
65 |
Baughman R. H. ; Cui C. X. ; Zakhidov A. A. ; Iqbal Z. ; Barisci J. N. ; Spinks G. M. ; Wallace G. G. ; Mazzoldi A. ; De Rossi D. ; Rinzler A. G. ; et al Science 1999, 284, 1340.
doi: 10.1126/science.284.5418.1340 |
66 |
Xie X. ; Qu L. ; Zhou C. ; Li Y. ; Zhu J. ; Bai H. ; Shi G. ; Dai L. ACS Nano 2010, 4, 6050.
doi: 10.1021/nn101563x |
67 |
Park S. ; An J. ; Suk J. W. ; Ruoff R. S. Small 2010, 6, 210.
doi: 10.1002/smll.200901877 |
68 |
Lerf A. ; Buchsteiner A. ; Pieper J. ; Schöttl S. ; Dekany I. ; Szabo T. ; Boehm H. P. J. Phys. Chem. Solids 2006, 67, 1106.
doi: 10.1016/j.jpcs.2006.01.031 |
69 |
Sun G. ; Pan Y. ; Zhan Z. ; Zheng L. ; Lu J. ; Pang J. H. L. ; Li L. ; Huang W. J. Phys. Chem. C 2011, 115, 23741.
doi: 10.1021/jp207986m |
70 |
Mu J. ; Hou C. ; Zhu B. ; Wang H. ; Li Y. ; Zhang Q. Sci. Rep. 2015, 5, 9503.
doi: 10.1038/srep09503 |
71 |
Han D. D. ; Zhang Y. L. ; Jiang H. B. ; Xia H. ; Feng J. ; Chen Q. D. ; Xu H. L. ; Sun H. B. Adv. Mater. 2015, 27, 332.
doi: 10.1002/adma.201403587 |
72 |
Han D. D. ; Zhang Y. L. ; Liu Y. ; Liu Y. Q. ; Jiang H. B. ; Han B. ; Fu X. Y. ; Ding H. ; Xu H. L. ; Sun H. B. Adv. Funct. Mater. 2015, 25, 4548.
doi: 10.1002/adfm.201501511 |
73 |
Xu G. ; Chen J. ; Zhang M. ; Shi G. Sens. Actuators B 2017, 242, 418.
doi: 10.1016/j.snb.2016.11.068 |
74 |
Cheng H. ; Zhao F. ; Xue J. ; Shi G. ; Jiang L. ; Qu L. ACS Nano 2016, 10, 9529.
doi: 10.1021/acsnano.6b04769 |
75 |
Liu J. ; Wang Z. ; Xie X. ; Cheng H. ; Zhao Y. ; Qu L. J. Mater. Chem. 2012, 22, 4015.
doi: 10.1039/c2jm15266e |
76 |
Mukai K. ; Yamato K. ; Asaka K. ; Hata K. ; Oike H. Sens. Actuators B 2012, 161, 1010.
doi: 10.1016/j.snb.2011.11.084 |
77 |
Shi Q. ; Hou C. ; Wang H. ; Zhang Q. ; Li Y. Chem. Commun. 2016, 52, 5816.
doi: 10.1039/c6cc01590e |
78 |
Xu G. ; Zhang M. ; Zhou Q. ; Chen H. ; Gao T. ; Li C. ; Shi G. Nanoscale 2017, 9, 17465.
doi: 10.1039/c7nr07116g |
79 |
Chen L. ; Weng M. ; Zhou Z. ; Zhou Y. ; Zhang L. ; Li J. ; Huang Z. ; Zhang W. ; Liu C. ; Fan S. ACS Nano 2015, 9, 12189.
doi: 10.1021/acsnano.5b05413 |
80 |
Hu Y. ; Lan T. ; Wu G. ; Zhu Z. ; Chen W. Nanoscale 2014, 6, 12703.
doi: 10.1039/c4nr02768j |
81 |
Chen L. ; Liu C. ; Liu K. ; Meng C. ; Hu C. ; Wang J. ; Fan S. ACS Nano 2011, 5, 1588.
doi: 10.1021/nn102251a |
82 |
Wen Y. ; Wu M. ; Zhang M. ; Li C. ; Shi G. Adv. Mater. 2017, 29, 1702831.
doi: 10.1002/adma.201702831 |
83 |
Wan S. ; Peng J. ; Jiang L. ; Cheng Q. Adv. Mater. 2016, 28, 7862.
doi: 10.1002/adma.201601934 |
84 |
Kim J. ; Jeon J. H. ; Kim H. J. ; Lim H. ; Oh I. K. ACS Nano 2014, 8, 2986.
doi: 10.1021/nn500283q |
85 |
Li J. ; Ma W. ; Song L. ; Niu Z. ; Cai L. ; Zeng Q. ; Zhang X. ; Dong H. ; Zhao D. ; Zhou W. ; et al Nano Lett. 2011, 11, 4636.
doi: 10.1021/nl202132m |
86 |
Im K. H. ; Choi H. J. Korean Phys. Soc. 2014, 64, 623.
doi: 10.3938/jkps.64.623 |
87 |
Liu S. ; Liu Y. ; Cebeci H. ; de Villoria R. G. ; Lin J. H. ; Wardle B. L. ; Zhang Q. M. Adv. Funct. Mater. 2010, 20, 3266.
doi: 10.1002/adfm.201000570 |
88 |
Kim J. ; Bae S. H. ; Kotal M. ; Stalbaum T. ; Kim K. J. ; Oh I. K. Small 2017, 13, 1701314.
doi: 10.1002/smll.201701314 |
89 |
Shian S. ; Diebold R. M. ; Clarke D. R. Opt. Express 2013, 21, 8669.
doi: 10.1364/OE.21.008669 |
90 |
Yuan W. ; Hu L. B. ; Yu Z. B. ; Lam T. ; Biggs J. ; Ha S. M. ; Xi D. J. ; Chen B. ; Senesky M. K. ; Grüner G. ; et al Adv. Mater. 2008, 20, 621.
doi: 10.1002/adma.200701018 |
91 |
Kinloch I. A. ; Suhr J. ; Lou J. ; Young R. J. ; Ajayan P. M. Science 2018, 362, 547.
doi: 10.1126/science.aat7439 |
92 |
Yuan J. ; Neri W. ; Zakri C. ; Merzeau P. ; Kratz K. ; Lendlein A. ; Poulin P. Science 2019, 365, 155.
doi: 10.1126/science.aaw3722 |
93 |
Wang Y. ; Sun L. Z. Appl. Phys. Lett. 2017, 111, 161904.
doi: 10.1063/1.4997092 |
94 |
Zhang F. ; Li T. ; Luo Y. Compos. Sci. Technol. 2018, 156, 151.
doi: 10.1016/j.compscitech.2017.12.016 |
95 |
Kim D. ; Lee H. S. ; Yoon J. Sci. Rep. 2016, 6, 20921.
doi: 10.1038/srep20921 |
96 |
Kim H. ; Ahn S. K. ; Mackie D. M. ; Kwon J. ; Kim S. H. ; Choi C. ; Moon Y. H. ; Lee H. B. ; Ko S. H. Mater. Today 2020, 41, 243.
doi: 10.1016/j.mattod.2020.06.005 |
97 |
Mirvakili S. M. ; Hunter I. W. Adv. Mater. 2017, 29, 1604734.
doi: 10.1002/adma.201604734 |
98 |
Li Q. ; Liu C. ; Lin Y. H. ; Liu L. ; Jiang K. ; Fan S. ACS Nano 2015, 9, 409.
doi: 10.1021/nn505535k |
99 |
Oh J. H. ; Anas M. ; Barnes E. ; Moores L. C. ; Green M. J. Adv. Eng. Mater. 2021, 23, 2000873.
doi: 10.1002/adem.202000873 |
100 |
Ling Y. ; Pang W. ; Li X. ; Goswami S. ; Xu Z. ; Stroman D. ; Liu Y. ; Fei Q. ; Xu Y. ; Zhao G. ; et al Adv. Mater. 2020, 32, 1908475.
doi: 10.1002/adma.201908475 |
101 |
Han B. ; Zhang Y. L. ; Zhu L. ; Li Y. ; Ma Z. C. ; Liu Y. Q. ; Zhang X. L. ; Cao X. W. ; Chen Q. D. ; Qiu C. W. ; et al Adv. Mater. 2019, 31, 1806386.
doi: 10.1002/adma.201806386 |
102 |
Mu J. ; Hou C. ; Wang H. ; Li Y. ; Zhang Q. ; Zhu M. Sci. Adv. 2015, 1, e1500533.
doi: 10.1126/sciadv.1500533 |
103 |
Dong Y. ; Wang J. ; Guo X. ; Yang S. ; Ozen M. O. ; Chen P. ; Liu X. ; Du W. ; Xiao F. ; Demirci U. ; Liu B. F. Nat. Commun. 2019, 10, 4087.
doi: 10.1038/s41467-019-12044-5 |
104 |
Chen L. ; Weng M. ; Zhou P. ; Huang F. ; Liu C. ; Fan S. ; Zhang W. Adv. Funct. Mater. 2019, 29, 1806057.
doi: 10.1002/adfm.201806057 |
105 |
Zhao H. ; Hu R. ; Li P. ; Gao A. ; Sun X. ; Zhang X. ; Qi X. ; Fan Q. ; Liu Y. ; Liu X. ; et al Nano Energy 2020, 76, 104926.
doi: 10.1016/j.nanoen.2020.104926 |
106 |
Wang X. Q. ; Chan K. H. ; Cheng Y. ; Ding T. ; Li T. ; Achavananthadith S. ; Ahmet S. ; Ho J. S. ; Ho G. W. Adv. Mater. 2020, 32, e2000351.
doi: 10.1002/adma.202000351 |
107 |
Xiao Y. ; Lin J. ; Xiao J. ; Weng M. ; Zhang W. ; Zhou P. ; Luo Z. ; Chen L. Nanoscale 2021, 13, 6259.
doi: 10.1039/d0nr09210j |
[1] | Chengcheng Zhang, Zhiyi Wu, Jiahui Shen, Le He, Wei Sun. Silicon Nanostructure Arrays: An Emerging Platform for Photothermal CO2 Catalysis [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304004-. |
[2] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[3] | Lianlian Ji, Xianpeng Wang, Yingying Zhang, Xueli Shen, Di Xue, Lu Wang, Zi Wang, Wenchong Wang, Lizhen Huang, Lifeng Chi. In situ and Ex situ Investigation of the Organic-Organic Interface Effect [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304002-. |
[4] | Muhammad Faizan, Guoqi Zhao, Tianxu Zhang, Xiaoyu Wang, Xin He, Lijun Zhang. Elastic and Thermoelectric Properties of Vacancy Ordered Double Perovskites A2BX6: A DFT Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303004-. |
[5] | Heran Wang, Kai Chen, Shuo Fu, Haoxuan Wang, Jiaxuan Yuan, Xingyi Hu, Wenjuan Xu, Baoxiu Mi. Isomeric Bisbenzophenothiazines: Synthesis, Theoretical Calculations, and Photophysical Properties [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303047-. |
[6] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[7] | Yaowu Luo, Dingsheng Wang. Enhancing Heterogeneous Catalysis by Electronic Property Regulation of Single Atom Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212020-0. |
[8] | Meng Li, Fulin Yang, Jinfa Chang, Alex Schechter, Ligang Feng. MoP-NC Nanosphere Supported Pt Nanoparticles for Efficient Methanol Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2301005-0. |
[9] | Fengyu Gao, Hengheng Liu, Xiaolong Yao, Zaharaddeen Sani, Xiaolong Tang, Ning Luo, Honghong Yi, Shunzheng Zhao, Qingjun Yu, Yuansong Zhou. Spherical MnxCo3−xO4−ƞ Spinel with Mn-Enriched Surface as High-Efficiency Catalysts for Low-Temperature Selective Catalytic Reduction of NOx by NH3 [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212003-0. |
[10] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[11] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[12] | Wenjie Zhou, Qihang Jing, Jiaxin Li, Yingzhi Chen, Guodong Hao, Lu-Ning Wang. Organic Photocatalysts for Solar Water Splitting: Molecular- and Aggregate-Level Modifications [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211010-0. |
[13] | Tianmi Tang, Zhenlu Wang, Jingqi Guan. Electronic Structure Regulation of Single-Site M-N-C Electrocatalysts for Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2208033-0. |
[14] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[15] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
|