Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (4): 2007090.doi: 10.3866/PKU.WHXB202007090
Special Issue: Metal Halide Perovskite Optoelectronic Material and Device
• PERSPECTIVE • Previous Articles Next Articles
Zihao Zang, Hansheng Li, Xianyuan Jiang, Zhijun Ning()
Received:
2020-07-30
Accepted:
2020-08-26
Published:
2020-09-03
Contact:
Zhijun Ning
E-mail:ningzhj@shanghaitech.edu.cn
About author:
Zhijun Ning, Email: ningzhj@shanghaitech.edu.cn. Tel.: +86-20685083Supported by:
Zihao Zang, Hansheng Li, Xianyuan Jiang, Zhijun Ning. Progress and Perspective of Tin Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin. 2021, 37(4), 2007090. doi: 10.3866/PKU.WHXB202007090
Fig 1
(a) The crystal structure of perovskite materials ABX3 65; (b) band structures and partial densities of states of α-CsSnI3 42; (c) Hall measurements of CsSnI3 films for various SnF2 concentrations indicating charge carrier density and mobility 54; (d) calculated formation energy of defects as a function of the Fermi energy EF at a Sn-rich condition (left) and a Sn-poor condition (right) 63. (a) Copyright 2017, The Royal Society of Chemistry. (b) Copyright 2013, American Physical Society. (c) Copyright 2014, WILEY-VCH. (d) Copyright 2014, American Chemical Society. "
Fig 2
(a) J–V curves of the devices based on FAxMA1_xSnI3 66; (b) top-view SEM images of the perovskite films without and (c) with 10% en loading at low magnification 68; (d) enduring stability showing PCE of E1 and E1G20 devices as a function of storage period in N2-filled glove box. Inset: J–V curves of the device E1G20 70; (e) device architecture and current density–voltage J–V) characteristics of the highest performance device under simulated AM1.5 G illumination. (f) GIWAXS measurement of SCN film. Incidence angle is 0.2°; (g) GIWAXS measurement of SCN film. Incidence angle is 2°; (h) Schematic of SCN film 75; (i) corresponding plot of the fraction of Ge(II) vs the incidence angle. Inset: illustration of native oxide; (j) J–V curve of the " champing" device 86. (d) Copyright 2018, WILEY-VCH. (e–h) Copyright 2018 Elsevier Inc. "
Fig 4
(a) Device structure of the {en}FASnI3 perovskite solar cells, structure of TPE and J–V plots of the best-performing {en}FASnI3 solar cell using the TPE HTL measured under reverse voltage scans96. (b) Scheme of the 'inverted' structure PSC device 83; (c) J–V curves of the certified PEA15-SCN device with ICBA and champion device of PEA15-SCN film with PCBM; (d) schematic illustration of energy levels. Dashed lines represent the quasi-Fermi level; (e) surface potential distribution of perovskite/ETL from SKPM measurement. The insert images are AFM topography images for the corresponding samples 29. (a) Copyright 2017, American Chemical Society. (b) Copyright 2016, WILEY-VCH. "
1 |
Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
doi: 10.1021/ja809598r |
2 | https://www.nrel.gov/pv/cell-efficiency.html (accessed Feb 11, 2020). |
3 |
Yu D. ; Hu Y. ; Shi J. ; Tang H. ; Zhang W. ; Meng Q. ; Han H. ; Ning Z. ; Tian H. Sci. China Chem. 2019, 62, 684.
doi: 10.1007/s11426-019-9448-3 |
4 |
Park N. G. Mater. Today 2015, 18, 65.
doi: 10.1016/j.mattod.2014.07.007 |
5 |
Stoumpos C. C. ; Kanatzidis M. G. Acc. Chem. Res. 2015, 48, 2791.
doi: 10.1021/acs.accounts.5b00229 |
6 |
Wang Y. ; Zhang Y. ; Zhang P. ; Zhang W. Phys. Chem. Chem. Phys. 2015, 17, 11516.
doi: 10.1039/c5cp00448a |
7 |
Sun S. ; Salim T. ; Mathews N. ; Duchamp M. ; Boothroyd C. ; Xing G. ; Sum T. C. ; Lam Y. M. Energy Environ. Sci. 2014, 7, 399.
doi: 10.1039/c3ee43161d |
8 |
Yin W. J. ; Shi T. ; Yan Y. Adv. Mater. 2014, 26, 4653.
doi: 10.1002/adma.201306281 |
9 |
D'Innocenzo V. ; Grancini G. ; Alcocer M. J. ; Kandada A. R. ; Stranks S. D. ; Lee M. M. ; Lanzani G. ; Snaith H. J. ; Petrozza A. Nat. Commun. 2014, 5, 3586.
doi: 10.1038/ncomms4586 |
10 |
Miyata A. ; Mitioglu A. ; Plochocka P. ; Portugall O. ; Wang J. T. W. ; Stranks S. D. ; Snaith H. J. ; Nicholas R. J. Nat. Phys. 2015, 11, 582.
doi: 10.1038/nphys3357 |
11 |
Dong Q. ; Fang Y. ; Shao Y. ; Mulligan P. ; Qiu J. ; Cao L. ; Huang J. Science 2015, 347, 967.
doi: 10.1126/science.aaa5760 |
12 |
Draguta S. ; Thakur S. ; Morozov Y. V. ; Wang Y. ; Manser J. S. ; Kamat P. V. ; Kuno M. J. Phys. Chem. Lett. 2016, 7, 715.
doi: 10.1021/acs.jpclett.5b02888 |
13 |
Kang J. ; Wang L. W. J. Phys. Chem. Lett. 2017, 8, 489.
doi: 10.1021/acs.jpclett.6b02800 |
14 |
Meggiolaro D. ; Motti S. G. ; Mosconi E. ; Barker A. J. ; Ball J. ; Andrea Riccardo Perini C. ; Deschler F. ; Petrozza A. ; De Angelis F. Energy Environ. Sci. 2018, 11, 702.
doi: 10.1039/c8ee00124c |
15 |
Polman A. ; Knight M. ; Garnett E. C. ; Ehrler B. ; Sinke W. C. Science 2016, 352, aad4424.
doi: 10.1126/science.aad4424 |
16 | Gu J. Y. ; Qi P. W. ; Peng Y. Acta Phys. -Chim. Sin. 2017, 33, 1379. |
顾津宇; 齐朋伟; 彭扬. 物理化学学报, 2017, 33, 1379.
doi: 10.3866/PKU.WHXB201704182 |
|
17 |
Yang W. F. ; Igbari F. ; Lou Y. H. ; Wang Z. K. ; Liao L. S. Adv. Energy Mater. 2020, 10, 1902584.
doi: 10.1002/aenm.201902584 |
18 | Li H. M. ; Dong H. ; Li J. R. ; Wu Z. X. Acta Phys. -Chim. Sin. 2021, 37, 2007006. |
李淏淼; 董化; 李璟睿; 吴朝新. 物理化学学报, 2021, 37, 2007006.
doi: 10.3866/PKU.WHXB202007006 |
|
19 |
Krishnamoorthy T. ; Ding H. ; Yan C. ; Leong W.L. ; Baikie T. ; Zhang Z. ; Sherburne M. ; Li S. ; Asta M. ; Mathews N. ; et al J. Mater. Chem. A 2015, 3, 23829.
doi: 10.1039/c5ta05741h |
20 |
Huang L. ; Lambrecht W. R. L. Phys. Rev. B 2016, 93, 195211.
doi: 10.1103/PhysRevB.93.195211 |
21 |
Kopacic I. ; Friesenbichler B. ; Hoefler S. F. ; Kunert B. ; Plank H. ; Rath T. ; Trimmel G. ACS Appl. Energy Mater. 2018, 1, 343.
doi: 10.1021/acsaem.8b00007 |
22 |
Cortecchia D. ; Dewi H. A. ; Yin J. ; Bruno A. ; Chen S. ; Baikie T. ; Boix P.P. ; Gratzel M. ; Mhaisalkar S. ; Soci C. ; et al Inorg. Chem. 2016, 55, 1044.
doi: 10.1021/acs.inorgchem.5b01896 |
23 |
Li X. ; Zhong X. ; Hu Y. ; Li B. ; Sheng Y. ; Zhang Y. ; Weng C. ; Feng M. ; Han H. ; Wang J. J. Phys. Chem. Lett. 2017, 8, 1804.
doi: 10.1021/acs.jpclett.7b00086 |
24 |
Cui X. ; Jiang K. ; Huang J. ; Zhang Q. ; Su M. ; Yang L. ; Song Y. ; Zhou X. Synth. Met. 2015, 209, 247.
doi: 10.1016/j.synthmet.2015.07.013 |
25 |
Park B. W. ; Philippe B. ; Zhang X. ; Rensmo H. ; Boschloo G. ; Johansson E. M. Adv. Mater. 2015, 27, 6806.
doi: 10.1002/adma.201501978 |
26 |
Pazoki M. ; Johansson M. B. ; Zhu H. ; Broqvist P. ; Edvinsson T. ; Boschloo G. ; Johansson E. M. J. J. Phys. Chem. C 2016, 120, 29039.
doi: 10.1021/acs.jpcc.6b11745 |
27 |
Mohammad T. ; Kumar V. ; Dutta V. Sol. Energy 2019, 182, 72.
doi: 10.1016/j.solener.2019.02.034 |
28 |
Zuo C. ; Ding L. Angew. Chem. Int. Ed. 2017, 56, 6528.
doi: 10.1002/anie.201702265 |
29 |
Jiang X. ; Wang F. ; Wei Q. ; Li H. ; Shang Y. ; Zhou W. ; Wang C. ; Cheng P. ; Chen Q. ; Chen L. ; et al Nat. Commun. 2020, 11, 1245.
doi: 10.1038/s41467-020-15078-2 |
30 |
Liu X. ; Wang Y. ; Wu T. ; He X. ; Meng X. ; Barbaud J. ; Chen H. ; Segawa H. ; Yang X. ; Han L. Nat. Commun. 2020, 11, 2678.
doi: 10.1038/s41467-020-16561-6 |
31 |
Ju M. ; Chen M. ; Zhou Y. ; Dai J. ; Ma L. ; Padture N. P. ; Zeng X. C. Joule 2018, 2, 1231.
doi: 10.1016/j.joule.2018.04.026 |
32 |
Stoumpos C. C. ; Malliakas C. D. ; Kanatzidis M. G. Inorg. Chem. 2013, 52, 9019.
doi: 10.1021/ic401215x |
33 |
Goldschmidt V. M. Naturwissenschaften 1926, 14, 477.
doi: 10.1007/BF01507527 |
34 |
Li C. ; Lu X. ; Ding W. ; Feng L. ; Gao Y. ; Guo Z. Acta Cryst. 2008, B64, 702.
doi: 10.1107/S0108768108032734 |
35 |
Travis W. ; Glover E. N. K. ; Bronstein H. ; Scanlon D. O. ; Palgrave R. G. Chem. Sci. 2016, 7, 4548.
doi: 10.1039/c5sc04845a |
36 |
Zhou Y. ; Zhao Y. Energy Environ. Sci. 2019, 12, 1495.
doi: 10.1039/c8ee03559h |
37 |
Shannon R. D. Acta Cryst. 1976, A32, 751.
doi: 10.1107/S0567739476001551 |
38 |
Chung I. ; Song J. H. ; Im J. ; Androulakis J. ; Malliakas C. D. ; Li H. ; Freeman A. J. ; Kenney J. T. ; Kanatzidis M. G. J. Am. Chem. Soc. 2012, 134, 8579.
doi: 10.1021/ja301539s |
39 |
Pisanu A. ; Speltini A. ; Quadrelli P. ; Drera G. ; Sangaletti L. ; Malavasi L. J. Mater. Chem. C 2019, 7, 7020.
doi: 10.1039/c9tc01743g |
40 |
Lee S. J. ; Shin S. S. ; Im J. ; Ahn T. K. ; Noh J. H. ; Jeon N. J. ; Seok S. I. ; Seo J. ACS Energy Lett. 2018, 3, 46.
doi: 10.1021/acsenergylett.7b00976 |
41 |
Sabba D. ; Mulmudi H. K. ; Prabhakar R. R. ; Krishnamoorthy T. ; Baikie T. ; Boix P. P. ; Mhaisalkar S. ; Mathews N. J. Phys. Chem. C 2015, 119, 1763.
doi: 10.1021/jp5126624 |
42 |
Huang L. ; Lambrecht W. R. L. Phys. Rev. B 2013, 88, 165203.
doi: 10.1103/PhysRevB.88.165203 |
43 |
Noel N. K. ; Stranks S. D. ; Abate A. ; Wehrenfennig C. ; Guarnera S. ; Haghighirad A. A. ; Sadhanala A. ; Eperon G. E. ; Pathak S. K. ; Johnston M. B. ; et al Energy Environ. Sci. 2014, 7, 3061.
doi: 10.1039/c4ee01076k |
44 |
Hao F. ; Stoumpos C. C. ; Cao D. H. ; Chang R. P. H. ; Kanatzidis M. G. Nat. Photon. 2014, 8, 489.
doi: 10.1038/nphoton.2014.82 |
45 |
Wang L. Z. ; Zhao Y. Q. ; Liu B. ; Wu L. J. ; Cai M. Q. Phys. Chem. Chem. Phys. 2016, 18, 22188.
doi: 10.1039/c6cp03605h |
46 |
Tao S. ; Schmidt I. ; Brocks G. ; Jiang J. ; Tranca I. ; Meerholz K. ; Olthof S. Nat. Commun. 2019, 10, 2560.
doi: 10.1038/s41467-019-10468-7 |
47 |
Prasanna R. ; Gold-Parker A. ; Leijtens T. ; Conings B. ; Babayigit A. ; Boyen H. G. ; Toney M. F. ; McGehee M. D. J. Am. Chem. Soc. 2017, 139, 11117.
doi: 10.1021/jacs.7b04981 |
48 |
Shockley W. ; Queisser H. J. J. Appl. Phys. 1961, 32, 510.
doi: 10.1063/1.1736034 |
49 |
Rühle S. Sol. Energy 2016, 130, 139.
doi: 10.1016/j.solener.2016.02.015 |
50 |
Li B. ; Long R. ; Xia Y. ; Mi Q. Angew. Chem. Int. Ed. 2018, 57, 13154.
doi: 10.1002/anie.201807674 |
51 |
Chen Z. ; Yu C. ; Shum K. ; Wang J. J. ; Pfenninger W. ; Vockic N. ; Midgley J. ; Kenney J. T. J. Lumin. 2012, 132, 345.
doi: 10.1016/j.jlumin.2011.09.006 |
52 |
Milot R. L. ; Klug M. T. ; Davies C. L. ; Wang Z. ; Kraus H. ; Snaith H. J. ; Johnston M. B. ; Herz L. M. Adv. Mater. 2018, 30, 1804506.
doi: 10.1002/adma.201804506 |
53 |
Ruf F. ; Aygüler M. F. ; Giesbrecht N. ; Rendenbach B. ; Magin A. ; Docampo P. ; Kalt H. ; Hetterich M. APL Mater. 2019, 7, 031113.
doi: 10.1063/1.5083792 |
54 |
Kumar M. H. ; Dharani S. ; Leong W. L. ; Boix P. P. ; Prabhakar R.R. ; Baikie T. ; Shi C. ; Ding H. ; Ramesh R. ; Asta M. ; et al Adv. Mater. 2014, 26, 7122.
doi: 10.1002/adma.201401991 |
55 |
Stoumpos C. C. ; Kanatzidis M. G. Adv. Mater. 2016, 28, 5778.
doi: 10.1002/adma.201600265 |
56 |
Herz L. M. ACS Energy Lett. 2017, 2, 1539.
doi: 10.1021/acsenergylett.7b00276 |
57 |
Shi J. ; Li D. ; Luo Y. ; Wu H. ; Meng Q. Rev. Sci. Instrum. 2016, 87, 123107.
doi: 10.1063/1.4972104 |
58 |
Herz L. M. Annu. Rev. Phys. Chem. 2016, 67, 65.
doi: 10.1146/annurev-physchem-040215-112222 |
59 |
Wehrenfennig C. ; Eperon G. E. ; Johnston M. B. ; Snaith H. J. ; Herz L. M. Adv. Mater. 2014, 26, 1584.
doi: 10.1002/adma.201305172 |
60 |
Manser J. S. ; Christians J. A. ; Kamat P. V. Chem. Rev. 2016, 116, 12956.
doi: 10.1021/acs.chemrev.6b00136 |
61 |
Yuan J. ; Jiang Y. ; He T. ; Shi G. ; Fan Z. ; Yuan M. Sci. China Chem. 2019, 62, 629.
doi: 10.1007/s11426-018-9436-1 |
62 |
Shi J. ; Li Y. ; Li Y. ; Li D. ; Luo Y. ; Wu H. ; Meng Q. Joule 2018, 2, 879.
doi: 10.1016/j.joule.2018.04.010 |
63 |
Xu P. ; Chen S. ; Xiang H. J. ; Gong X. G. ; Wei S. H. Chem. Mater. 2014, 26, 6068.
doi: 10.1021/cm503122j |
64 |
Shi T. ; Zhang H. S. ; Meng W. ; Teng Q. ; Liu M. ; Yang X. ; Yan Y. ; Yip H. L. ; Zhao Y. J. J. Mater. Chem. A 2017, 5, 15124.
doi: 10.1039/c7ta02662e |
65 |
Krishna A. ; Grimsdale A. C. J. Mater. Chem. A 2017, 5, 16446.
doi: 10.1039/c7ta01258f |
66 |
Zhao Z. ; Gu F. ; Li Y. ; Sun W. ; Ye S. ; Rao H. ; Liu Z. ; Bian Z. ; Huang C. Adv. Sci. 2017, 4, 1700204.
doi: 10.1002/advs.201700204 |
67 |
Gao W. ; Ran C. ; Li J. ; Dong H. ; Jiao B. ; Zhang L. ; Lan X. ; Hou X. ; Wu Z. J. Phys. Chem. Lett. 2018, 9, 6999.
doi: 10.1021/acs.jpclett.8b03194 |
68 |
Ke W. ; Stoumpos C. C. ; Zhu M. ; Mao L. ; Spanopoulos I. ; Liu J. ; Kontsevoi O.Y. ; Chen M. ; Sarma D. ; Zhang Y. ; et al Sci. Adv. 2017, 3, e1701293.
doi: 10.1126/sciadv.1701293 |
69 |
Yang D. ; Lv J. ; Zhao X. ; Xu Q. ; Fu Y. ; Zhan Y. ; Zunger A. ; Zhang L. Chem. Mater. 2017, 29, 524.
doi: 10.1021/acs.chemmater.6b03221 |
70 |
Jokar E. ; Chien C. H. ; Tsai C. M. ; Fathi A. ; Diau E. W. Adv. Mater. 2019, 31 (2), 1804835.
doi: 10.1002/adma.201804835 |
71 |
Zhao T. ; Chueh C. C. ; Chen Q. ; Rajagopal A. ; Jen A. K. Y. ACS Energy Lett. 2016, 1, 757.
doi: 10.1021/acsenergylett.6b00327 |
72 |
Chen Y. ; Yu S. ; Sun Y. ; Liang Z. J. Phys. Chem. Lett. 2018, 9, 2627.
doi: 10.1021/acs.jpclett.8b00840 |
73 |
Tsai H. ; Asadpour R. ; Blancon J. C. ; Stoumpos C. C. ; Even J. ; Ajayan P. M. ; Kanatzidis M. G. ; Alam M. A. ; Mohite A. D. ; Nie W. Nat. Commun. 2018, 9, 2130.
doi: 10.1038/s41467-018-04430-2 |
74 |
Ran C. ; Gao W. ; Li J. ; Xi J. ; Li L. ; Dai J. ; Yang Y. ; Gao X. ; Dong H. ; Jiao B. ; et al Joule 2019, 3, 3072.
doi: 10.1016/j.joule.2019.08.023 |
75 |
Liao Y. ; Liu H. ; Zhou W. ; Yang D. ; Shang Y. ; Shi Z. ; Li B. ; Jiang X. ; Zhang L. ; Quan L. N. ; et al J. Am. Chem. Soc. 2017, 139, 6693.
doi: 10.1021/jacs.7b01815 |
76 |
Wang F. ; Jiang X. ; Chen H. ; Shang Y. ; Liu H. ; Wei J. ; Zhou W. ; He H. ; Liu W. ; Ning Z. Joule 2018, 2, 2732.
doi: 10.1016/j.joule.2018.09.012 |
77 |
Shao S. ; Liu J. ; Portale G. ; Fang H. H. ; Blake G. R. ; ten Brink G. H. ; Koster L. J. A. ; Loi M. A. Adv. Energy Mater. 2018, 8 (4), 1702019.
doi: 10.1002/aenm.201702019 |
78 |
Mao L. ; Stoumpos C. C. ; Kanatzidis M. G. J. Am. Chem. Soc. 2019, 141, 1171.
doi: 10.1021/jacs.8b10851 |
79 |
Chen M. ; Dong Q. ; Eickemeyer F. T. ; Liu Y. ; Dai Z. ; Carl A. D. ; Bahrami B. ; Chowdhury A. H. ; Grimm R.L. ; Shi Y. ; et al ACS Energy Lett. 2020, 5, 2223.
doi: 10.1021/acsenergylett.0c00888 |
80 |
Li P. ; Liu X. ; Zhang Y. ; Liang C. ; Chen G. ; Li F. ; Su M. ; Xing G. ; Tao X. ; Song Y. Angew. Chem. Int. Ed. 2020, 59, 6909.
doi: 10.1002/anie.202000460 |
81 |
Conings B. ; Drijkoningen J. ; Gauquelin N. ; Babayigit A. ; D'Haen J. ; D'Olieslaeger L. ; Ethirajan A. ; Verbeeck J. ; Manca J. ; Mosconi E. ; et al Adv. Energy Mater. 2015, 5 (15), 1500477.
doi: 10.1002/aenm.201500477 |
82 |
Dang Y. ; Zhou Y. ; Liu X. ; Ju D. ; Xia S. ; Xia H. ; Tao X. Angew. Chem. Int. Ed. 2016, 55, 3447.
doi: 10.1002/anie.201511792 |
83 |
Beal R. E. ; Slotcavage D. J. ; Leijtens T. ; Bowring A. R. ; Belisle R. A. ; Nguyen W. H. ; Burkhard G. F. ; Hoke E. T. ; McGehee M. D. J. Phys. Chem. Lett. 2016, 7, 746.
doi: 10.1021/acs.jpclett.6b00002 |
84 |
Wang N. ; Zhou Y. ; Ju M. G. ; Garces H. F. ; Ding T. ; Pang S. ; Zeng X. C. ; Padture N. P. ; Sun X. W. Adv. Energy Mater. 2016, 6, 1601130.
doi: 10.1002/aenm.201601130 |
85 |
Song T. B. ; Yokoyama T. ; Aramaki S. ; Kanatzidis M. G. ACS Energy Lett. 2017, 2, 897.
doi: 10.1021/acsenergylett.7b00171 |
86 |
Heo J. H. ; Kim J. ; Kim H. ; Moon S. H. ; Im S. H. ; Hong K. H. J. Phys. Chem. Lett. 2018, 9, 6024.
doi: 10.1021/acs.jpclett.8b02555 |
87 |
Chen M. ; Ju M. G. ; Garces H. F. ; Carl A. D. ; Ono L. K. ; Hawash Z. ; Zhang Y. ; Shen T. ; Qi Y. ; Grimm R. L. ; et al Nat. Commun. 2019, 10, 16.
doi: 10.1038/s41467-018-07951-y |
88 |
Gupta S. ; Cahen D. ; Hodes G. J. Phys. Chem. C 2018, 122, 13926.
doi: 10.1021/acs.jpcc.8b01045 |
89 |
Xiao M. ; Gu S. ; Zhu P. ; Tang M. ; Zhu W. ; Lin R. ; Chen C. ; Xu W. ; Yu T. ; Zhu J. Adv. Optical Mater. 2018, 6 (1), 1700615.
doi: 10.1002/adom.201700615 |
90 |
Lee S. J. ; Shin S. S. ; Kim Y. C. ; Kim D. ; Ahn T. K. ; Noh J. H. ; Seo J. ; Seok S. I. J. Am. Chem. Soc. 2016, 138, 3974.
doi: 10.1021/jacs.6b00142 |
91 |
Marshall K. P. ; Walker M. ; Walton R. I. ; Hatton R. A. Nat. Energy 2016, 1, 16178.
doi: 10.1038/nenergy.2016.178 |
92 |
Hao F. ; Stoumpos C. C. ; Guo P. ; Zhou N. ; Marks T. J. ; Chang R. P. ; Kanatzidis M. G. J. Am. Chem. Soc. 2015, 137, 11445.
doi: 10.1021/jacs.5b06658 |
93 |
Wu T. ; Liu X. ; He X. ; Wang Y. ; Meng X. ; Noda T. ; Yang X. ; Han L. Sci. China Chem. 2019, 63, 107.
doi: 10.1007/s11426-019-9653-8 |
94 |
Lin Y. ; Shen L. ; Dai J. ; Deng Y. ; Wu Y. ; Bai Y. ; Zheng X. ; Wang J. ; Fang Y. ; Wei H. ; et al Adv. Mater. 2017, 29 (7), 1604545.
doi: 10.1002/adma.201604545 |
95 | Zhang J. ; He Y. J. ; Min J. Acta Phys. -Chim. Sin. 2018, 34, 1221. |
张婧; 何有军; 闵杰. 物理化学学报, 2018, 34, 1221.
doi: 10.3866/PKU.WHXB201803231 |
|
96 | Liu X. P. ; Kong F. T. ; Chen W. C. ; Yu T. ; Guo F. L. ; Chen J. ; Dai S. Y. Acta Phys. -Chim. Sin. 2016, 32, 1347. |
刘雪朋; 孔凡太; 陈汪超; 于婷; 郭福领; 陈健; 戴松元. 物理化学学报, 2016, 32, 1347.
doi: 10.3866/PKU.WHXB201603143 |
|
97 |
Ke W. ; Priyanka P. ; Vegiraju S. ; Stoumpos C. C. ; Spanopoulos I. ; Soe C. M. M. ; Marks T. J. ; Chen M. C. ; Kanatzidis M. G. J. Am. Chem. Soc. 2018, 140, 388.
doi: 10.1021/jacs.7b10898 |
98 |
Liao W. ; Zhao D. ; Yu Y. ; Grice C. R. ; Wang C. ; Cimaroli A. J. ; Schulz P. ; Meng W. ; Zhu K. ; Xiong R. G. ; et al Adv. Mater. 2016, 28, 9333.
doi: 10.1002/adma.201602992 |
99 |
Yan W. ; Ye S. ; Li Y. ; Sun W. ; Rao H. ; Liu Z. ; Bian Z. ; Huang C. Adv. Energy Mater. 2016, 6, 1600474.
doi: 10.1002/aenm.201600474 |
100 |
Liu X. ; Wang Y. ; Xie F. ; Yang X. ; Han L. ACS Energy Lett. 2018, 3, 1116.
doi: 10.1021/acsenergylett.8b00383 |
101 |
Vegiraju S. ; Ke W. ; Priyanka P. ; Ni J. S. ; Wu Y. C. ; Spanopoulos I. ; Yau S. L. ; Marks T. J. ; Chen M. C. ; Kanatzidis M. G. Adv. Funct. Mater. 2019, 29, 1905393.
doi: 10.1002/adfm.201905393 |
102 |
Baig F. ; Khattak Y. H. ; Marí B. ; Beg S. ; Gillani S. R. ; Ahmed A. Optik 2018, 170, 463.
doi: 10.1016/j.ijleo.2018.05.135 |
103 |
Liu D. ; Zhou W. ; Tang H. ; Fu P. ; Ning Z. Sci. China Chem. 2018, 61, 1278.
doi: 10.1007/s11426-018-9250-6 |
104 |
Song T. B. ; Yokoyama T. ; Stoumpos C. C. ; Logsdon J. ; Cao D. H. ; Wasielewski M. R. ; Aramaki S. ; Kanatzidis M. G. J. Am. Chem. Soc. 2017, 139, 836.
doi: 10.1021/jacs.6b10734 |
105 |
Meng X. ; Wu T. ; Liu X. ; He X. ; Noda T. ; Wang Y. ; Segawa H. ; Han L. J. Phys. Chem. Lett. 2020, 11, 2965.
doi: 10.1021/acs.jpclett.0c00923 |
106 |
Wei Q. ; Ke Y. ; Ning Z. Energy Environ. Mater. 2020, 3, 541.
doi: 10.1002/eem2.12075 |
107 |
Meng X. ; Wang Y. ; Lin J. ; Liu X. ; He X. ; Barbaud J. ; Wu T. ; Noda T. ; Yang X. ; Han L. Joule 2020, 4, 902.
doi: 10.1016/j.joule.2020.03.007 |
[1] | Heran Wang, Kai Chen, Shuo Fu, Haoxuan Wang, Jiaxuan Yuan, Xingyi Hu, Wenjuan Xu, Baoxiu Mi. Isomeric Bisbenzophenothiazines: Synthesis, Theoretical Calculations, and Photophysical Properties [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303047-. |
[2] | Qiuju Liang, Yinxia Chang, Chaowei Liang, Haolei Zhu, Zibin Guo, Jiangang Liu. Application of Crystallization Kinetics Strategy in Morphology Control of Solar Cells based on Nonfullerene Blends [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212006-0. |
[3] | Mingxu Zhang, Qisen Zhou, Xinyi Mei, Jingxuan Chen, Junming Qiu, Xiuzhi Li, Shuang Li, Mubing Yu, Chaochao Qin, Xiaoliang Zhang. Colloidal Quantum Dot Solids with a Diminished Epitaxial PbI2 Matrix for Efficient Infrared Solar Cells [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210002-0. |
[4] | Yongtao Wen, Jing Li, Xiaofeng Gao, Congcong Tian, Hao Zhu, Guomu Yu, Xiaoli Zhang, Hyesung Park, Fuzhi Huang. Two-Step Sequential Blade-Coating Large-Area FA-Based Perovskite Thin Film via a Controlled PbI2 Microstructure [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203048-0. |
[5] | Yue Lu, Yang Ge, Manling Sui. Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007088-. |
[6] | Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005007-. |
[7] | Wusong Zha, Lianping Zhang, Long Wen, Jiachen Kang, Qun Luo, Qin Chen, Shangfeng Yang, Chang-Qi Ma. Controllable Formation of PbI2 and PbI2(DMSO) Nano Domains in Perovskite Films through Precursor Solvent Engineering [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003022-. |
[8] | Xiaoyun Xu, Hongbo Wu, Shijie Liang, Zheng Tang, Mengyang Li, Jing Wang, Xiang Wang, Jin Wen, Erjun Zhou, Weiwei Li, Zaifei Ma. Quantum Efficiency and Voltage Losses in P3HT: Non-fullerene Solar Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201039-. |
[9] | Haomiao Li, Hua Dong, Jingrui Li, Zhaoxin Wu. Recent Advances in Tin-Based Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007006-. |
[10] | Yuan Yin, Zhendong Guo, Gaoyuan Chen, Huifeng Zhang, Wan-Jian Yin. Recent Progress in Defect Tolerance and Defect Passivation in Halide Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008048-. |
[11] | Guiying Xu, Rongming Xue, Moyao Zhang, Yaowen Li, Yongfang Li. Synthesis of Pyrazine-based Hole Transport Layer and Its Application in p-i-n Planar Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008050-. |
[12] | Jun Ji, Xin Liu, Hao Huang, Haoran Jiang, Mingjun Duan, Benyu Liu, Peng Cui, Yingfeng Li, Meicheng Li. Recent Progress on Perovskite Homojunction Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008095-. |
[13] | Peiliang Lü, Caiyun Gao, Xiuhong Sun, Mingliang Sun, Zhipeng Shao, Shuping Pang. Synthesis of Cs-Rich CH(NH2)2)xCs1−xPbI3 Perovskite Films Using Additives with Low Sublimation Temperature [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009036-. |
[14] | Wentao Zhou, Yihua Chen, Huanping Zhou. Strategies to Improve the Stability of Perovskite-based Tandem Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009044-. |
[15] | Peiquan Song, Liqiang Xie, Lina Shen, Kaikai Liu, Yuming Liang, Kebin Lin, Jianxun Lu, Chengbo Tian, Zhanhua Wei. Stable Perovskite Solar Cells Using Compact Tin Oxide Layer Deposited through Electrophoresis [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004038-. |
|