Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (12): 2404-2423    DOI: 10.3866/PKU.WHXB201706263
所属专题: 高被引科学家特刊
综述     
石墨烯基复合材料应用于光电二氧化碳还原的基本原理,研究进展和发展前景
全泉1,谢顺吉2,王野2,*(),徐艺军1,*()
1 福州大学化学学院,能源与环境光催化国家重点实验室,福州350116
2 厦门大学化学化工学院,固体表面物理化学国家重点实验室,能源材料化学协同创新中心,福建厦门361005
Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective
Quan QUAN1,Shun-Ji XIE2,Ye WANG2,*(),Yi-Jun XU1,*()
1 State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
2 State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
 全文: PDF(5661 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

面对日益严重的化石能源消耗和温室效应问题,二氧化碳还原正成为一个重要的全球性研究课题,其通过消耗二氧化碳来生成可用于能源供应的产物。光电催化技术同时利用光能和外部电压,是一种用于二氧化碳还原的可行且有效的途径。因为石墨烯具有增强二氧化碳吸附和促进光生电子转移的特性能够提升石墨烯基复合电极的性能,所以引入石墨烯用于调优光电催化二氧化碳还原体系已经引起了广泛关注。本篇综述详细陈述了石墨烯基复合材料应用于光电二氧化碳还原的基本原理,电极制备方法以及目前的研究进展。我们也对这个蓬勃发展的领域未来可能会遇到的机遇和挑战进行了展望,同时提出了潜在可行的革新策略用于提升光电二氧化碳还原方面的研究。

关键词: 光电催化二氧化碳还原石墨烯基复合材料    
Abstract:

In response to aggravated fossil resources consuming and greenhouse effect, CO2 reduction has become a globally important scientific issue because this method can be used to produce value-added feedstock for application in alternative energy supply. Photoelectrocatalysis, achieved by combining optical energy and external electrical bias, is a feasible and promising system for CO2 reduction. In particular, applying graphene in tuning photoelectrochemical CO2 reduction has aroused considerable attention because graphene is advantageous for enhancing CO2 adsorption, facilitating electrons transfer, and thus optimizing the performance of graphene-based composite electrodes. In this review, we elaborate the fundamental principle, basic preparation methods, and recent progress in developing a variety of graphene-based composite electrodes for photoelectrochemical reduction of CO2 into solar fuels and chemicals. We also present a perspective on the opportunities and challenges for future research in this booming area and highlight the potential evolution strategies for advancing the research on photoelectrochemical CO2 reduction.

Key words: Photoelectrochemical    CO2 reduction    Graphene-based composite
收稿日期: 2017-06-05 出版日期: 2017-06-26
中图分类号:  O649  
基金资助: 国家自然科学基金(U1463204);国家自然科学基金(20903023);国家自然科学基金(21173045);闽江学者特聘教授科研启动基金;福建省杰出青年自然科学基金(2012J06003);能源与环境光催化国家重点实验室自主课题(2014A05);福建省首批特支人才“双百计划”青年拔尖创新人才;厦门大学固体表面物理化学国家重点实验室开放课题(201519);教育部留学回国人员科研启动基金项目;福建省杰出青年自然科学基金滚动资助项目(2017J07002)
通讯作者: 王野,徐艺军     E-mail: wangye@xmu.edu.cn;yjxu@fzu.edu.cn
作者简介: QUAN Quan is now pursuing her PhD degree under the supervision of Prof. XU Yi-Jun at the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, P. R. China. Her current research interests include composite materials synthesis and their applications in energy conversion and storage such as photocatalytic and photoelectrochemical redox processes|XIE Shun-Ji received his BS and MSc degrees from Hunan University of China in 2008 and 2011, and obtained his PhD degree from Xiamen University in 2014. He is currently an iChEM Fellow in the Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, China. He focuses on photocatalytic energy conversion, especially CO2 reduction|WANG Ye obtained his PhD degree in 1996 from Tokyo Institute of Technology. He then worked at Tokyo Institute of Technology, Tohoku University and Hiroshima University during 1996-2000. He was promoted to associate professor at Hiroshima University in 2001. He became a professor of Xiamen University in the August of 2001. He is currently the director of State Key Laboratory of Physical Chemistry of Solid Surfaces and the director of Institute of Catalysis Science and Technology of Xiamen University. The group of Professor Wang works on catalysis for efficient utilization of carbon resources including the selective transformation of methane, syngas, biomass and CO2 into fuels and chemicals|XU Yi-Jun received his PhD degree in heterogeneous catalysis at School of Chemistry, Cardiff University, U.K. in 2006 with the supervision of Prof. Graham J. Hutchings (FLSW FRS). From 2007 to 2009, he worked as a postdoctoral fellow at the Fritz-Haber Institute of the Max Planck Society, Berlin, Germany. After that, he became a full professor working at State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, P.R. China. He is a Fellow of Royal Society of Chemistry (FRSC) and his current research interests primarily focus on the assembly and applications of composite materials, such as graphene-based semiconductor composites, core-shell composites and metal-based nanostructured materials, in the field of heterogeneous photocatalysis
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
全泉
谢顺吉
王野
徐艺军

引用本文:

全泉,谢顺吉,王野,徐艺军. 石墨烯基复合材料应用于光电二氧化碳还原的基本原理,研究进展和发展前景[J]. 物理化学学报, 2017, 33(12): 2404-2423.

Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective. Acta Phys. -Chim. Sin., 2017, 33(12): 2404-2423.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201706263        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I12/2404

Reaction Production Transferred electron numbers ΔG0/(kJ·mol-1) ΔE0/V
CO2(g) → CO(g) + 1/2O2(g) CO 2 257 1.33
CO2(g) + H2O(l) → HCOOH(l) + 1/2O2(g) HCOOH 2 286 1.48
CO2(g) + H2O(l) → HCHO(l) + O2(g) HCHO 4 522 1.35
CO2(g) + 2H2O(l) → CH3OH(l) + 3/2O2(g) CH3OH 6 703 1.21
CO2(g) + 2H2O(l) → CH4(g) + 2O2(g) CH4 8 818 1.06
CO2(g) + 3/2H2O(l) → 1/2C2H5OH(l) + 3/2O2(g) C2H5OH 6 663 1.14
CO2(g) + H2O(l) → 1/2C2H4(g) + 3/2O2(g) C2H4 6 666 1.15
CO2(g) + 3/2H2O(l) → 1/2C2H6(g) + 7/4O2(g) C2H6 7 734 1.09
Table 1  Thermodynamics of CO2 reduction.
Fig 1  (A) Two-electron reaction mechanism of CO2 reduction in aqueous solutions, (B) The formation of π-π conjugation interaction between graphene and CO2 molecule.
Fig 2  Schematic illustrations of (A) type Ⅰ and (B) type Ⅱ for photoelectrochemical setup.
Fig 3  (A) Schematic illustration of a drop-casting process, (B) SEM image of BiVO4-RGO (the inset is photographs of BiVO4 and BiVO4-RGO electrodes), (C) Schematic illustration of a dip-coating process, (D) FESEM image of RGO-CdS QDs composite films self-assembled on FTO substrate with the same five deposition cycles. (B) is reprinted with permission from Ref.89, Copyright 2010 American Chemical Society. (D) is reprinted with permission from Ref.28, Copyright 2010 American Chemical Society.
Fig 4  (A) Schematic illustration of a spin-coating process, (B) AFM image of thin films prepared at 2000 r·min-1 (the inset is the schematic of the spin coating process as 2000 r·min-1), (C) AFM image of thin films prepared at 600 r·min-1 (the inset is the schematic of the spin coating process as 600 r·min-1). (B, C) are reprinted with permission from Ref.92, Copyright 2008 American Institute of Physics.
Fig 5  Schematic illustration of the graphene transfer process by electrochemical bubbling method. (A) A Pt foil with grown graphene covered by a PMMA layer, (B) The PMMA/graphene/Pt in (A) is used as a cathode and a Pt foil is used as an anode, (C) The PMMA/graphene is gradually separated from the Pt substrate driven by the H2 bubbles produced at the cathode after applying a constant current, (D) The completely separated PMMA/graphene layer and Pt foil after bubbling for tens of seconds. The PMMA/graphene layer is denoted by a red arrow in (C) and (B). (A-D) are reprinted with permission from Ref.98, Copyright 2012 Nature Publishing group.
Fig 6  (A) Schematic illustration of graphene growth mechanism involving decomposition of CH4 by floating Cu and H, sublimation of Cu particles from the Cu foil at 1000 ℃, and growth of graphene on SiO2 substrates after obtaining a certain distance from the Cu foil, (B) Schematic illustration of the PECVD procedure, (C) AFM image of the graphitic clusters after nucleation at 650 ℃. AFM images of the HGCs on SiO2 /Si after PECVD (CH4 + H2) growth at 600 ℃ for (D) 90 min and (E) for 120 min, (F) AFM image of a graphene membrane on SiO2/Si, (G) Schematic illustration of the growth mechanism on h-BN. (A) is reprinted with permission from Ref.100, Copyright 2012 American Chemical Society. (B–F) are reprinted with permission from Ref.101, Copyright 2013 John Wiley & Sons, Inc. (G) is reprinted with permission from Ref.102, Copyright 2013 Nature Publishing group.
Fig 7  (A) Schematic illustration of the EPD process and cross-sectional SEM image of RGO film, (B) Schematic illustration of fabrication process for the Fe3O4/CNTs/RGO composite electrode. (A) is modified with permission from Ref.104, Copyright 2010 American Chemical Society. (B) is reprinted with permission from Ref.105, Copyright 2016 American Chemical Society.
Fig 8  (A) SEM image of graphene/TNAs, (B) Cross-sectional SEM image of graphene-Au composite. (A) is reprinted with permission from Ref.107, Copyright 2016 Elsevier. (B) is reprinted with permission from Ref.109, Copyright 2011 John Wiley & Sons, Inc.
Fig 9  (A) Schematic illustration of the photoelectrochemical system, (B) TEM image of Pt-RGO, (C) SEM image of Pt-TNT, (D) Carbon atom conversion rate of CO2 reduction under varying cathode catalysts, (E) Chemical generation rates and (F) current efficiency under varying cathodes. (A–F) are reprinted with permission from Ref.77, Copyright 2014 American Chemical Society.
Fig 10  (A) TEM image of N-GQSs on monolayer graphene, (B) Photocurrent density-potential (J-E) curves, (C) Band alignment of p-type Si and calculated band edge positions of different sized GQS, (D) Proposed photoelectrocatalytic cycle of CO2 to CO reduction on pyridinic N doped coronene (C24H12). (A?D) are reprinted with permission from Ref.78, Copyright 2016 John Wiley & Sons, Inc.
Fig 11  (A) Schematic illustration of strategic integration of the RGO with CdS over 3D TiO2 architectures, (B) Comparative values of the stabilized peak current obtained in the photoelectrochemical measurements of panel with CdS (140% increment), RGO/CdS (150% increment) and combined effect of RGO and CdS (500% increment), Photoelectrochemical responses showing (C) the multiple "On-Off" cycles and (D) J-V characteristics (rTiO2 represents TiO2 nanorod). (A?D) are reprinted with permission from Ref.114, Copyright 2015 American Chemical Society.
Fig 12  Schematic illustrations of (A) an open cell configuration in which CdSe QDs with graphene oxide as photoanode and (B) electron transfer pathways, (C) TEM micrograph of GO after illumination (> 420 nm) of CdSe-GO dispersion, (D) Quenching of CdSe QDs photoluminescence by GO and RGO (the inset is effective quenching even at low graphene concentration), (E) Incident photon to current efficiency (IPCE) of CdSe and CdSe-(R)GO film. (A?E) are reprinted with permission from Ref.116, Copyright 2012 American Chemical Society.
Fig 13  (A) Schematic illustration of photoelectrochemical reactor, (B) Photoluminescence spectrum of TiO2, RGO-TiO2 and Cu-RGO-TiO2, (C) Nyquist plots of the TiO2, RGO-TiO2 and Cu-RGO-TiO2 film electrodes at open circuit potentials both in the dark and under visible irradiation (the inset is the equivalent circuit). (A?C) are reprinted with permission from Ref.117, Copyright 2015 Royal Society of Chemistry.
Fig 14  Schematic illustrations of (A) Z-scheme system for CO2 reduction and H2O oxidation, and (B) the photoelectrochemical reduction of CO2 with a two-electrode configuration and no electrical bias. (A, B) are reprinted with permission from Ref.128, Copyright 2013 Royal Society of Chemistry.
Fig 15  Schematic illustrations of (A) Z-scheme system for water splitting and CO2 reduction and (B) photoelectrochemical system consisting of a metal sulfide photocatalyst electrode with a p-type semiconductor character and a CoOx/BiVO4 photoelectrode. (A, B) are reprinted with permission from Ref.130, Copyright 2016 American Chemical Society.
Fig 16  Laboratory cells used for electrochemical CO2 conversion: (A) two-compartment cell, (B) cell with electrodes separated by an H+-conducting membrane, and (C) cell with a gas diffusion electrode. (A?C) are reprinted with permission from Ref.131, Copyright 2013 Royal Society of Chemistry.
1 Luthi D. ; Le Floch M. ; Bereiter B. ; Blunier T. ; Barnola J. M. ; Siegenthaler U. ; Raynaud D. ; Jouzel J. ; Fischer H. ; Kawamura K. ; Stocker T. F. Nature 2008, 453, 379.
doi: 10.1038/nature06949
2 Canadell J. G. ; Le Quere C. ; Raupach M. R. ; Field C. B. ; Buitenhuis E. T. ; Ciais P. ; Conway T. J. ; Gillett N. P. ; Houghton R. A. ; Marland G. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 18866.
doi: 10.1073/pnas.0702737104
3 Somorjai G. A. ; Frei H. ; Park J. Y. J. Am. Chem. Soc. 2009, 131, 16589.
doi: 10.1021/ja9061954
4 Aresta M. ; Dibenedetto A. Dalton Trans. 2007, 2975.
doi: 10.1039/B700658F
5 Centi G. ; Perathoner S. Catal. Today 2009, 148, 191.
doi: 10.1016/j.cattod.2009.07.075
6 Jiang Z. ; Xiao T. ; Kuznetsov V. L. ; Edwards P. P. Philos. Trans. R. Soc. A 2010, 368, 3343.
doi: 10.1098/rsta.2010.0119
7 Grills D. C. ; Fujita E. J. Phys. Chem. Lett. 2010, 1, 2709.
doi: 10.1021/jz1010237
8 Bolton J. R. Science 1978, 202, 705.
doi: 10.1126/science.202.4369.705
9 Ikeue K. ; Yamashita H. ; Anpo M. ; Takewaki T. J. Phys. Chem. B 2001, 105, 8350.
doi: 10.1021/jp010885g
10 Varghese O. K. ; Paulose M. ; LaTempa T. J. ; Grimes C. A. Nano Lett. 2009, 9, 731.
doi: 10.1021/nl803258p
11 Dimitrijevic N. M. ; Vijayan B. K. ; Poluektov O. G. ; Rajh T. ; Gray K. A. ; He H. ; Zapol P. J. Am. Chem. Soc. 2011, 133, 3964.
doi: 10.1021/ja108791u
12 Liu Q. ; Zhou Y. ; Kou J. ; Chen X. ; Tian Z. ; Gao J. ; Yan S. ; Zou Z. J. Am. Chem. Soc. 2010, 132, 14385.
doi: 10.1021/ja1068596
13 Izumi Y. Coord. Chem. Rev. 2013, 257, 171.
doi: 10.1016/j.ccr.2012.04.018
14 Fu Y. ; Sun D. ; Chen Y. ; Huang R. ; Ding Z. ; Fu X. ; Li Z. Angew. Chem. 2012, 51, 3420.
doi: 10.1002/anie.201108357
15 Roy S. C. ; Varghese O. K. ; Paulose M. ; Grimes C. A. ACS Nano 2010, 4, 1259.
doi: 10.1021/nn9015423
16 Benson E. E. ; Kubiak C. P. ; Sathrum A. J. ; Smieja J. M. Chem. Soc. Rev. 2009, 38, 89.
doi: 10.1039/B804323J
17 Spinner N. S. ; Vega J. A. ; Mustain W. E. Catal. Sci. Technol. 2012, 2, 19.
doi: 10.1039/C1CY00314C
18 Li C. W. ; Kanan M. W. J. Am. Chem. Soc. 2012, 134, 7231.
doi: 10.1021/ja3010978
19 Ampelli C. ; Centi G. ; Passalacqua R. ; Perathoner S. Energy Environ. Sci. 2010, 3, 292.
doi: 10.1039/B925470F
20 Bard A. J. Science 1980, 207, 139.
doi: 10.1126/science.207.4427.139
21 Sato S. ; Arai T. ; Morikawa T. Inorg. Chem. 2015, 54, 5105.
doi: 10.1021/ic502766g
22 Halmann M. Nature 1978, 275, 115.
doi: 10.1038/275115a0
23 Sato, S. Photoelectrochemical CO2 Reduction. In Encyclopedia of Applied Electrochemistry; Springer New York: 2014; pp 1535.
24 Li D. ; Kaner R. B. Science 2008, 320, 1170.
doi: 10.1126/science.1158180
25 Li Y. ; Su H. ; Chan S. H. ; Sun Q. ACS Catal. 2015, 5, 6658.
doi: 10.1021/acscatal.5b01165
26 Yang M. Q. ; Xu Y. J. Nanoscale Horiz. 2016, 1, 185.
doi: 10.1039/C5NH00113G
27 Zhu D. D. ; Liu J. L. ; Qiao S. Z. Adv. Mater. 2016, 28, 3423.
doi: 10.1002/adma.201504766
28 Xiao F. X. ; Miao J. ; Liu B. J. Am. Chem. Soc. 2014, 136, 1559.
doi: 10.1021/ja411651e
29 Liu Q. ; Liu Z. ; Zhang X. ; Yang L. ; Zhang N. ; Pan G. ; Yin S. ; Chen Y. ; Wei J. Adv. Funct. Mater. 2009, 19, 894.
doi: 10.1002/adfm.200800954
30 Zhai C. ; Zhu M. ; Lu Y. ; Ren F. ; Wang C. ; Du Y. ; Yang P. Phys. Chem. Chem. Phys. 2014, 16, 14800.
doi: 10.1039/C4CP01401D
31 Chang H. ; Lv X. ; Zhang H. ; Li J. Electrochem. Commun. 2010, 12, 483.
doi: 10.1016/j.elecom.2010.01.025
32 Xiang Q. ; Cheng B. ; Yu J. Angew. Chem. Int. Ed. 2015, 54, 11350.
doi: 10.1002/anie.201411096
33 Tran P. D. ; Wong L. H. ; Barber J. ; Loo J. S. C. Energy Environ. Sci. 2012, 5, 5902.
doi: 10.1039/C2EE02849B
34 Habisreutinger S. N. ; Schmidt-Mende L. ; Stolarczyk J. K. Angew. Chem. Int. Ed. 2013, 52, 7372.
doi: 10.1002/anie.201207199
35 Li H. ; Gan S. ; Wang H. ; Han D. ; Niu L. Adv. Mater. 2015, 27, 6906.
doi: 10.1002/adma.201502755
36 Sato S. ; Arai T. ; Morikawa T. ; Uemura K. ; Suzuki T. M. ; Tanaka H. ; Kajino T. J. Am. Chem. Soc. 2011, 133, 15240.
doi: 10.1021/ja204881d
37 Magesh G. ; Kim E. S. ; Kang H. J. ; Banu M. ; Kim J. Y. ; Kim J. H. ; Lee J. S. J. Mater. Chem. A 2014, 2, 2044.
doi: 10.1039/C3TA14408A
38 Chen W. Y. ; Mattern D. L. ; Okinedo E. ; Senter J. C. ; Mattei A. A. ; Redwine C. W. AIChE J. 2014, 60, 1054.
doi: 10.1002/aic.14347
39 Xie S. ; Zhang Q. ; Liu G. ; Wang Y. Chem. Commun. 2016, 52, 35.
doi: 10.1039/C5CC07613G
40 Tinnemans A. ; Koster T. ; Thewissen D. ; Mackor A. Recl. Trav. Chim. Pays-Bas 1984, 103, 288.
doi: 10.1002/recl.19841031004
41 Zhao W. W. ; Xiong M. ; Li X. R. ; Xu J. J. ; Chen H. Y. Electrochem. Commun. 2014, 38, 40.
doi: 10.1016/j.elecom.2013.10.035
42 Li X. ; Wen J. ; Low J. ; Fang Y. ; Yu J. Sci. China Mater. 2014, 57, 70.
doi: 10.1007/s40843-014-0003-1
43 Schouten K. J. P. ; Kwon Y. ; van der Ham C. J. M. ; Qin Z. ; Koper M. T. M. Chem. Sci. 2011, 2, 1902.
doi: 10.1039/C1SC00277E
44 Inoue T. ; Fujishima A. ; Konishi S. ; Honda K. Nature 1979, 277, 637.
doi: 10.1038/277637a0
45 Anpo M. ; Yamashita H. ; Ichihashi Y. ; Ehara S. J. Electroanal. Chem. 1995, 396, 21.
doi: 10.1016/0022-0728(95)04141-A
46 Yang C. C. ; Vernimmen J. ; Meynen V. ; Cool P. ; Mul G. J. Catal. 2011, 284, 1.
doi: 10.1016/j.jcat.2011.08.005
47 Ulagappan N. ; Frei H. J. Phys. Chem. A 2000, 104, 7834.
doi: 10.1021/jp001470i
48 Amatore C. ; Saveant J. M. J. Am. Chem. Soc. 1981, 103, 5021.
doi: 10.1021/ja00407a008
49 Chang X. ; Wang T. ; Gong J. Energy Environ. Sci. 2016, 9, 2177.
doi: 10.1039/C6EE00383D
50 Hori Y. ; Wakebe H. ; Tsukamoto T. ; Koga O. Electrochim. Acta 1994, 39, 1833.
doi: 10.1016/0013-4686(94)85172-7
51 Koppenol W. H. ; Rush J. D. J. Phys. Chem. 1987, 91, 4429.
doi: 10.1021/j100300a045
52 Centi G. ; Perathoner S. ; Wine G. ; Gangeri M. Green Chem. 2007, 9, 671.
doi: 10.1039/B615275A
53 Wu T. ; Zou L. ; Han D. ; Li F. ; Zhang Q. ; Niu L. Green Chem. 2014, 16, 2142.
doi: 10.1039/C3GC42454E
54 Ong W. J. ; Tan L. L. ; Chai S. P. ; Yong S. T. Chem. Commun. 2015, 51, 858.
doi: 10.1039/C4CC08996K
55 Yu J. ; Jin J. ; Cheng B. ; Jaroniec M. J. Mater. Chem. A 2014, 2, 3407.
doi: 10.1039/C3TA14493C
56 Stoller M. D. ; Park S. ; Zhu Y. ; An J. ; Ruoff R. S. Nano Lett. 2008, 8, 3498.
doi: 10.1021/nl802558y
57 Gattrell M. ; Gupta N. ; Co A. J. Electroanal. Chem. 2006, 594, 1.
doi: 10.1016/j.jelechem.2006.05.013
58 Yoneyama H. ; Sugimura K. ; Kuwabata S. J. Electroanal. Chem. 1988, 249, 143.
doi: 10.1016/0022-0728(88)80355-3
59 Chang X. ; Wang T. ; Zhang P. ; Wei Y. ; Zhao J. ; Gong J. Angew. Chem. Int. Ed. 2016, 128, 8986.
doi: 10.1002/anie.201602973
60 Allam N. K. ; Shankar K. ; Grimes C. A. J. Mater. Chem. 2008, 18, 2341.
doi: 10.1039/B718580D
61 Luo J. ; Im J. H. ; Mayer M. T. ; Schreier M. ; Nazeeruddin M. K. ; Park N. G. ; Tilley S. D. ; Fan H. J. ; Gr?tzel M. Science 2014, 345, 1593.
doi: 10.1126/science.1258307
62 Minguez-Bacho I. ; Courte M. ; Fan H. J. ; Fichou D. Nanotechnology 2015, 26, 185401.
doi: 10.1088/0957-4484/26/18/185401
63 Chua L. L. ; Zaumseil J. ; Chang J. F. ; Ou E. C. W. ; Ho P. K. H. ; Sirringhaus H. ; Friend R. H. Nature 2005, 434, 194.
doi: 10.1038/nature03376
64 Koval C. A. ; Howard J. N. Chem. Rev. 1992, 92, 411.
doi: 10.1021/cr00011a004
65 Gao Y. Q. ; Georgievskii Y. ; Marcus R. A. J. Chem. Phys. 2000, 112, 3358.
doi: 10.1063/1.480918
66 White J. L. ; Baruch M. F. ; Pander Iii J. E. ; Hu Y. ; Fortmeyer I. C. ; Park J. E. ; Zhang T. ; Liao K. ; Gu J. ; Yan Y. ; Shaw T. W. ; Abelev E. ; Bocarsly A. B. Chem. Rev. 2015, 115, 12888.
doi: 10.1021/acs.chemrev.5b00370
67 Peng Y. P. ; Yeh Y. T. ; Shah S. I. ; Huang C. P. Appl. Catal., B 2012, 123- 124, 414.
doi: 10.1016/j.apcatb.2012.04.037
68 Chen D. ; Zhang H. ; Liu Y. ; Li J. Energy Environ. Sci. 2013, 6, 1362.
doi: 10.1039/c3ee23586f
69 Lightcap I. V. ; Kamat P. V. Acc. Chem. Res. 2013, 46, 2235.
doi: 10.1021/ar300248f
70 Low J. ; Yu J. ; Ho W. J. Phys. Chem. Lett. 2015, 6, 4244.
doi: 10.1021/acs.jpclett.5b01610
71 Lightcap I. V. ; Murphy S. ; Schumer T. ; Kamat P. V. J. Phys. Chem. Lett. 2012, 3, 1453.
doi: 10.1021/jz3004206
72 Zhang N. ; Yang M. Q. ; Liu S. ; Sun Y. ; Xu Y. J. Chem. Rev. 2015, 115, 10307.
doi: 10.1021/acs.chemrev.5b00267
73 Tu W. ; Zhou Y. ; Liu Q. ; Tian Z. ; Gao J. ; Chen X. ; Zhang H. ; Liu J. ; Zou Z. Adv. Funct. Mater. 2012, 22, 1215.
doi: 10.1002/adfm.201102566
74 Han C. ; Chen Z. ; Zhang N. ; Colmenares J. C. ; Xu Y. J. Adv. Funct. Mater. 2015, 25, 221.
doi: 10.1002/adfm.201402443
75 Gao E. ; Wang W. ; Shang M. ; Xu J. Phys. Chem. Chem. Phys. 2011, 13, 2887.
doi: 10.1039/C0CP01749C
76 Wang P. Q. ; Bai Y. ; Luo P. Y. ; Liu J. Y. Catal. Commun. 2013, 38, 82.
doi: 10.1016/j.catcom.2013.04.020
77 Cheng J. ; Zhang M. ; Wu G. ; Wang X. ; Zhou J. ; Cen K. Environ. Sci. Technol. 2014, 48, 7076.
doi: 10.1021/es500364g
78 Yang K. D. ; Ha Y. ; Sim U. ; An J. ; Lee C. W. ; Jin K. ; Kim Y. ; Park J. ; Hong J. S. ; Lee J. H. ; Lee H. E. ; Jeong H. Y. ; Kim H. ; Nam K. T. Adv. Funct. Mater. 2016, 26, 233.
doi: 10.1002/adfm.201502751
79 Xiao F. X. ; Pagliaro M. ; Xu Y. J. ; Liu B. Chem. Soc. Rev. 2016, 45, 3088.
doi: 10.1039/C5CS00781J
80 Li Z. ; Luo W. ; Zhang M. ; Feng J. ; Zou Z. Energy Environ. Sci. 2013, 6, 347.
doi: 10.1039/C2EE22618A
81 Kecenovic E. ; Endr?di B. ; Pápa Z. ; Hernadi K. ; Rajeshwar K. ; Janaky C. J. Mater. Chem. A 2016, 4, 3139.
doi: 10.1039/C5TA10457B
82 Shen Q. ; Chen Z. ; Huang X. ; Liu M. ; Zhao G. Environ. Sci. Technol. 2015, 49, 5828.
doi: 10.1021/acs.est.5b00066
83 Kim K. S. ; Zhao Y. ; Jang H. ; Lee S. Y. ; Kim J. M. ; Kim K. S. ; Ahn J. H. ; Kim P. ; Choi J. Y. ; Hong B. H. Nature 2009, 457, 706.
doi: 10.1038/nature07719
84 Juang Z. Y. ; Wu C. Y. ; Lu A. Y. ; Su C. Y. ; Leou K. C. ; Chen F. R. ; Tsai C. H. Carbon 2010, 48, 3169.
doi: 10.1016/j.carbon.2010.05.001
85 Huang X. ; Qi X. ; Boey F. ; Zhang H. Chem. Soc. Rev. 2012, 41, 666.
doi: 10.1039/C1CS15078B
86 Xu C. ; Xu B. ; Gu Y. ; Xiong Z. ; Sun J. ; Zhao X. S. Energy Environ. Sci. 2013, 6, 1388.
doi: 10.1039/C3EE23870A
87 Chen J. ; Shi J. ; Wang X. ; Cui H. ; Fu M. Chin. J. Catal. 2013, 34, 621.
doi: 10.1016/S1872-2067(12)60530-0
88 Xiang Q. ; Yu J. ; Jaroniec M. Chem. Soc. Rev. 2012, 41, 782.
doi: 10.1039/C1CS15172J
89 Ng Y. H. ; Iwase A. ; Kudo A. ; Amal R. J. Phys. Chem. Lett. 2010, 1, 2607.
doi: 10.1021/jz100978u
90 Sun L. ; Bai Y. ; Zhang N. ; Sun K. Chem. Commun. 2015, 51, 1846.
doi: 10.1039/C4CC08288E
91 Li H. ; Pang S. ; Wu S. ; Feng X. ; Müllen K. ; Bubeck C. J. Am. Chem. Soc. 2011, 133, 9423.
doi: 10.1021/ja201594k
92 Eda G. ; Emrah Unalan H. ; Rupesinghe N. ; Amaratunga G. A. J. ; Chhowalla M. Appl. Phys. Lett. 2008, 93, 233502.
doi: 10.1063/1.3028339
93 Annamalai A. ; Kannan A. G. ; Lee S. Y. ; Kim D. W. ; Choi S. H. ; Jang J. S. J. Phys. Chem. C 2015, 119, 19996.
doi: 10.1021/acs.jpcc.5b06450
94 Chen Z. ; Ren W. ; Gao L. ; Liu B. ; Pei S. ; Cheng H. M. Nat. Mater. 2011, 10, 424.
doi: 10.1038/nmat3001
95 Li X. ; Cai W. ; An J. ; Kim S. ; Nah J. ; Yang D. ; Piner R. ; Velamakanni A. ; Jung I. ; Tutuc E. ; Banerjee S. K. ; Colombo L. ; Ruoff R. S. Science 2009, 324, 1312.
doi: 10.1126/science.1171245
96 Yu C. ; Meng X. ; Song X. ; Liang S. ; Dong Q. ; Wang G. ; Hao C. ; Yang X. ; Ma T. ; Ajayan P. M. ; Qiu J. Carbon 2016, 100, 474.
doi: 10.1016/j.carbon.2016.01.042
97 Shin S. ; Kim S. ; Kim T. ; Du H. ; Kim K. S. ; Cho S. ; Seo S. Carbon 2017, 111, 215.
doi: 10.1016/j.carbon.2016.09.077
98 Gao L. ; Ren W. ; Xu H. ; Jin L. ; Wang Z. ; Ma T. ; Ma L. P. ; Zhang Z. ; Fu Q. ; Peng L. M. ; Bao X. ; Cheng H. M. Nat. Commun. 2012, 3, 699.
doi: 10.1038/ncomms1702
99 Wang H. ; Yu G. Adv. Mater. 2016, 28, 4956.
doi: 10.1002/adma.201505123
100 Teng P. Y. ; Lu C. C. ; Akiyama-Hasegawa K. ; Lin Y. C. ; Yeh C. H. ; Suenaga K. ; Chiu P. W. Nano Lett. 2012, 12, 1379.
doi: 10.1021/nl204024k
101 Wei D. ; Lu Y. ; Han C. ; Niu T. ; Chen W. ; Wee A. T. Angew. Chem. Int. Ed. 2013, 52, 14121.
doi: 10.1002/anie.201306086
102 Yang W. ; Chen G. ; Shi Z. ; Liu C. C. ; Zhang L. ; Xie G. ; Cheng M. ; Wang D. ; Yang R. ; Shi D. ; Watanabe K. ; Taniguchi T. ; Yao Y. ; Zhang Y. ; Zhang G. Nat. Mater. 2013, 12, 792.
doi: 10.1038/nmat3695
103 Yuan Y. P. ; Ruan L. W. ; Barber J. ; Joachim Loo S. C. ; Xue C. Energy Environ. Sci. 2014, 7, 3934.
doi: 10.1039/C4EE02914C
104 An S. J. ; Zhu Y. ; Lee S. H. ; Stoller M. D. ; Emilsson T. ; Park S. ; Velamakanni A. ; An J. ; Ruoff R. S. J. Phys. Chem. Lett. 2010, 1, 1259.
doi: 10.1021/jz100080c
105 Yang Y. ; Li J. ; Chen D. ; Zhao J. ACS Appl. Mater. Interfaces 2016, 8, 26730.
doi: 10.1021/acsami.6b07990
106 Chen L. ; Tang Y. ; Wang K. ; Liu C. ; Luo S. Electrochem. Commun. 2011, 13, 133.
doi: 10.1016/j.elecom.2010.11.033
107 Li F. ; Zhang L. ; Tong J. ; Liu Y. ; Xu S. ; Cao Y. ; Cao S. Nano Energy 27, 320.
doi: 10.1016/j.nanoen.2016.06.056
108 Liu C. ; Teng Y. ; Liu R. ; Luo S. ; Tang Y. ; Chen L. ; Cai Q. Carbon 2011, 49, 5312.
doi: 10.1016/j.carbon.2011.07.051
109 Liu C. ; Wang K. ; Luo S. ; Tang Y. ; Chen L. Small 2011, 7, 1203.
doi: 10.1002/smll.201002340
110 Tang J. ; Zhang Y. ; Kong B. ; Wang Y. ; Da P. ; Li J. ; Elzatahry A. A. ; Zhao D. ; Gong X. ; Zheng G. Nano Lett. 2014, 14, 2702.
doi: 10.1021/nl500608w
111 Bessegato G. G. ; Guaraldo T. T. ; Brito J. F. ; Brugnera M. F. ; Zanoni M. V. B. Electrocatalysis 2015, 6, 415.
doi: 10.1007/s12678-015-0259-9
112 Zhang M. ; Cheng J. ; Xuan X. ; Zhou J. ; Cen K. ACS Sustainable Chem. Eng. 2016, 4, 6344.
doi: 10.1021/acssuschemeng.6b00909
113 Cheng J. ; Zhang M. ; Wu G. ; Wang X. ; Zhou J. ; Cen K. Sol. Energy Mater. Sol. Cells 2015, 132, 606.
doi: 10.1016/j.solmat.2014.10.015
114 Pathak P. ; Gupta S. ; Grosulak K. ; Imahori H. ; Subramanian V. J. Phys. Chem. C 2015, 119, 7543.
doi: 10.1021/jp512160h
115 Ng Y. H. ; Lightcap I. V. ; Goodwin K. ; Matsumura M. ; Kamat P. V. J. Phys. Chem. Lett. 2010, 1, 2222.
doi: 10.1021/jz100728z
116 Lightcap I. V. ; Kamat P. V. J. Am. Chem. Soc. 2012, 134, 7109.
doi: 10.1021/ja3012929
117 Hasan M. R. ; Abd Hamid S. B. ; Basirun W. J. ; Meriam Suhaimy S. H. ; Che Mat A. N. RSC Adv. 2015, 5, 77803.
doi: 10.1039/C5RA12525A
118 Liang Y. ; Li Y. ; Wang H. ; Zhou J. ; Wang J. ; Regier T. ; Dai H. Nat. Mater. 2011, 10, 780.
doi: 10.1038/nmat3087
119 Wu Z. S. ; Yang S. ; Sun Y. ; Parvez K. ; Feng X. ; Müllen K. J. Am. Chem. Soc. 2012, 134, 9082.
doi: 10.1021/ja3030565
120 Huang X. ; Cao T. ; Liu M. ; Zhao G. J. Phys. Chem. C 2013, 117, 26432.
doi: 10.1021/jp408630s
121 Sekizawa K. ; Maeda K. ; Domen K. ; Koike K. ; Ishitani O. J. Am. Chem. Soc. 2013, 135, 4596.
doi: 10.1021/ja311541a
122 Jin J. ; Yu J. ; Guo D. ; Cui C. ; Ho W. Small 2015, 11, 5262.
doi: 10.1002/smll.201500926
123 Iwashina K. ; Iwase A. ; Ng Y. H. ; Amal R. ; Kudo A. J. Am. Chem. Soc. 2015, 137, 604.
doi: 10.1021/ja511615s
124 Xian J. ; Li D. ; Chen J. ; Li X. ; He M. ; Shao Y. ; Yu L. ; Fang J. ACS Appl. Mater. Interfaces 2014, 6, 13157.
doi: 10.1021/am5029999
125 Li P. ; Zhou Y. ; Li H. ; Xu Q. ; Meng X. ; Wang X. ; Xiao M. ; Zou Z. Chem. Commun. 2015, 51, 800.
doi: 10.1039/C4CC08744E
126 Maeda K. ACS Catal. 2013, 3, 1486.
doi: 10.1021/cs4002089
127 Zhou P. ; Yu J. ; Jaroniec M. Adv. Mater. 2014, 26, 4920.
doi: 10.1002/adma.201400288
128 Arai T. ; Sato S. ; Kajino T. ; Morikawa T. Energy Environ. Sci. 2013, 6, 1274.
doi: 10.1039/C3EE24317F
129 Arai T. ; Sato S. ; Uemura K. ; Morikawa T. ; Kajino T. ; Motohiro T. Chem. Commun. 2010, 46, 6944.
doi: 10.1039/C0CC02061C
130 Iwase A. ; Yoshino S. ; Takayama T. ; Ng Y. H. ; Amal R. ; Kudo A. J. Am. Chem. Soc. 2016, 138, 10260.
doi: 10.1021/jacs.6b05304
131 Kondratenko E. V. ; Mul G. ; Baltrusaitis J. ; Larrazabal G. O. ; Perez-Ramirez J. Energy Environ. Sci. 2013, 6, 3112.
doi: 10.1039/C3EE41272E
132 Christensen P. A. ; Curtis T. P. ; Egerton T. A. ; Kosa S. A. M. ; Tinlin J. R. Appl. Catal.B 2003, 41, 371.
doi: 10.1016/s0926-3373(02)00172-8
133 Gangeri M. ; Perathoner S. ; Caudo S. ; Centi G. ; Amadou J. ; Bégin D. ; Pham-Huu C. ; Ledoux M. J. ; Tessonnier J. P. ; Su D. S. ; Schl?gl R. Catal. Today 2009, 143, 57.
doi: 10.1016/j.cattod.2008.11.00
[1] 宁汇,王文行,毛勤虎,郑诗瑞,杨中学,赵青山,吴明铂. 1-辛基-3-甲基咪唑功能化石墨片负载氧化亚铜催化二氧化碳电还原制乙烯[J]. 物理化学学报, 2018, 34(8): 938-944.
[2] 邱伟涛,黄勇潮,王子龙,肖爽,纪红兵,童叶翔. 光电催化分解水的光阳极改性策略[J]. 物理化学学报, 2017, 33(1): 80-102.
[3] 金环, 王娟, 姬云, 陈媚媚, 张轶, 王齐, 丛燕青. Ta/Al-Fe2O3薄膜电极的制备及其光电催化降解亚甲基蓝性能[J]. 物理化学学报, 2015, 31(5): 955-964.
[4] 何志桥,童丽丽,张志鹏,陈建孟,宋爽. Ag/Ag2WO4等离子体共振催化剂可见光催化还原CO2[J]. 物理化学学报, 2015, 31(12): 2341-2348.
[5] 闫伟平, 王德军, 陈礼平, 卢永春, 谢腾峰, 林艳红. In2O3敏化ZnO纳米棒阵列的性能及其光电催化活性[J]. 物理化学学报, 2013, 29(05): 1021-1027.
[6] 金涛, 许頔, 刁鹏, 项民. FeO(OH)-TiO2/CoPi复合光阳极的制备及其光电催化氧化水性能[J]. 物理化学学报, 2012, 28(10): 2276-2284.
[7] 丛燕青, 李哲, 王齐, 张轶, 徐谦, 伏芳霞. 金属氧化物(Fe2O3, CuO, NiO)改性对TiO2纳米管阵列光电催化活性的增强效应[J]. 物理化学学报, 2012, 28(06): 1489-1496.