物理化学学报 >> 2020, Vol. 36 >> Issue (1): 1905076.doi: 10.3866/PKU.WHXB201905076
所属专题: 庆祝唐有祺院士百岁华诞专刊
展金秀1,2,冯峰1,2,许敏1,2,姚立1,2,*(),葛茂发1,2,*(
)
收稿日期:
2019-05-28
录用日期:
2019-07-08
发布日期:
2019-07-18
通讯作者:
姚立,葛茂发
E-mail:yaoli@iccas.ac.cn;gemaofa@iccas.ac.cn
作者简介:
姚立,出生于1979年。毕业于中国科学院化学研究所,获理学博士学位。中国科学院化学研究所研究员,博士生导师。长期从事分子细胞相互作用与纳米生物技术研究|葛茂发,出生于1970年。毕业于吉林大学,获理学博士学位。中国科学院化学研究所研究员,博士生导师。研究方向包括大气化学、环境化学、环境催化、纳米材料和污染控制技术
基金资助:
Jinxiu Zhan1,2,Feng Feng1,2,Min Xu1,2,Li Yao1,2,*(),Maofa Ge1,2,*(
)
Received:
2019-05-28
Accepted:
2019-07-08
Published:
2019-07-18
Contact:
Li Yao,Maofa Ge
E-mail:yaoli@iccas.ac.cn;gemaofa@iccas.ac.cn
Supported by:
摘要:
纳米粒子在生物医学和大气环境领域的广泛研究使得其生物安全性越来越受到重视。目前已经有许多研究关注纳米粒子与细胞的相互作用及细胞毒性问题。本综述从细胞力学-化学偶联的角度总结了近五年来有关纳米粒子与细胞相互作用的研究进展。首先介绍了与细胞力学-化学偶联性质相关的分子基础以及目前检测细胞机械性质的纳米技术,然后重点讨论了纳米粒子对细胞粘附、骨架、刚度和迁移性质的影响。在此基础上,进一步指出了纳米生物力学-化学偶联的挑战与展望。
展金秀,冯峰,许敏,姚立,葛茂发. 纳米粒子与细胞相互作用的力学–化学偶联研究进展[J]. 物理化学学报, 2020, 36(1), 1905076. doi: 10.3866/PKU.WHXB201905076
Jinxiu Zhan,Feng Feng,Min Xu,Li Yao,Maofa Ge. Progress in Chemo–Mechanical Interactions between Nanoparticles and Cells[J]. Acta Physico-Chimica Sinica 2020, 36(1), 1905076. doi: 10.3866/PKU.WHXB201905076
表1
纳米粒子对细胞机械性质的影响"
Particle type | Size and zeta potential | Cell types | Incubation conditions | Impacts on cell mechanics | Ref. |
Iron-iron oxide | 16 ± 1.5 nm | BAC | 5, 10, 20, 50 μg·mL?1; | Increase in Young’s modulus of BACs with | |
core-shell MNPs | 3 days | the increase of NP concentration. | |||
Ag NPs | 20 nm | USC | 0–64 μg·mL?1; | Increase in actin polymerization and | |
5 × 103 cells·well?1; 24 h | cytoskeletal tension, activation of RhoA | ||||
Nano-Si64 and | 63.88 ± 10.35, | L-02 | 10, 20, 50 μg·mL?1; | Change in quantity and distribution of | |
Nano-Si46 | 46.15 ± 5.53 nm; | 1×105 cells·mL?1; | cytoskeleton through extra ROS and Ca2+ | ||
negatively charged | 24 h | leading to abnormal mitosis and cytokinesis | |||
AgNPs | 52.3 ± 8.7 nm (single NP); | MG-63 | 0.5, 5, 10, 20 μg·mL?1; | Destruction of F-actin in quantity and | |
201 nm (aggregates); | 2 × 104 cells·well?1; | structure, decrease in expressions of ALP, | |||
24, 48, 72 h | OCN and COL-I in a dose-dependent manner | ||||
TiO2-PEG NPs | 100, 200, 300 nm | NCI-H292 | 100 μg·mL?1; | NP-mediated promotion of the lysosomal | |
8 × 104 cells?cm?2; | degradation of integrin beta 1, thus leading to | ||||
3 h | reduced expression of pFAK and cytoskeletal | ||||
reduced expression of pFAK and cytoskeletal | |||||
Fullerenol NPs | 1.72 ± 0.14 nm | MCF-7, | 200 μg·mL?1; | Lowered stiffness and restrained migration, | |
MDA-MB-231 | 5 × 105 cells·well?1; | decrease in the number and length of | |||
24 h; | filopodia, change in cancer cell adhesion and | ||||
motility through the inhibition of integrin to | |||||
form clusters on filopodias | |||||
GO Nanosheets | 2 nm (thickness); | A549 | 50 μg·mL?1; | Retardation of cell migration through | |
397.6 ± 62.4 nm; | 6 h, 24 h | nanosheet-mediated disruption of intracellular | |||
?34.8 ± 1.0 mV | actin filaments. | ||||
Ag NPs and | 10 nm | CCD-1072Sk | 0.1, 1, 10 μg·mL?1; | Reduce in collagen and laminin production | |
Au NPs | 5×103/8-well; | and cell migration, increase in the formation | |||
24 h | of stress fibers and the number of cell | ||||
protrusions, impaired cell polarity. | |||||
SPIONs | 132.4 nm; ?25.37 mV | VFF | 20, 40, 80 μg·cm?2; 24 h | Decrease in VFF adhesion | |
Si NPs and | 7 nm | MSC | 100 μg·mL?1’; | Structural reorganization of cortical | |
SiB NPs | 3 × 103 cells?cm?2; | cytoskeleton with subsequent stiffness | |||
1 and 24 h | increase and concomitant F-actin content | ||||
TiO2 | 15–50 nm (single NP); | TR146 | 125, 1250 μmol?L?1; | Increase of long vinculin near the cell–cell | |
SiO2 | 272 ± 4, 236 ± 25 236 ± 9 | 90 000 cells?cm?2; | boundary and traction force, low level of MT | ||
HA | nm (aggregates); negatively | 12 h | acetylation, maturation of FAs, destabilization | ||
charged | of MT networks, promotion of cell adhesion | ||||
and retardation in cell migration | |||||
TiO2 NPs | 18–23 nm;≈?20 mV | MCF-7, MDA-MB-231, | 0–40 μg·mL?1; | Destruction of adherence junctions which | |
SiO2 NPs | SW620 | 0.5 and 24 h | induced endothelial leakiness and promoted | ||
Au NPs | the metastasis of breast cancer cells | ||||
Magnetoliposomes | 14.0,4.2–4.8,4.2 | NPCs and | 500, 1000 μg·mL?1; | Reduce in cellular proliferation, expression of | |
Endorem | and 4.0 nm | hBOECs | 5×104 cells·well?1; | FAK and distribution of actin cytoskeleton | |
Resovist | 24 h | and microtubule network | |||
very small organic | |||||
particles |
1 |
Grabinski C. ; Schaeublin N. ; Wijaya A. ; D'Couto H. ; Baxamusa S. H. ; Hamad-Schifferli K. ; Hussain S. M. ACS Nano 2011, 5 (4), 2870.
doi: 10.1021/nn103476x |
2 |
Pati R. ; Das I. ; Mehta R. K. ; Sahu R. ; Sonawane A. Toxicol. Sci. 2016, 150 (2), 454.
doi: 10.1093/toxsci/kfw010 |
3 |
Li J. C. ; Mao H. L. ; Kawazoe N. ; Chen G. P. Biomater. Sci. 2017, 5 (2), 173.
doi: 10.1039/c6bm00714g |
4 |
Rotsch C. ; Radmacher M. Biophys. J. 2000, 78 (1), 520.
doi: 10.1016/s0006-3495(00)76614-8 |
5 |
Tay C. Y. ; Cai P. Q. ; Setyawati M. I. ; Fang W. R. ; Tan L. P. ; Hong C. H. L. ; Chen X. D. ; Leong D. T. Nano Lett. 2014, 14 (1), 83.
doi: 10.1021/nl4032549 |
6 |
Li Y. ; Jing L. ; Yu Y. B. ; Yu Y. ; Duan J. C. ; Yang M. ; Geng W. J. ; Jiang L. Z. ; Li Q. L. ; Sun Z. W. Part. Part. Syst. Charact. 2015, 32 (6), 636.
doi: 10.1002/ppsc.201400180 |
7 |
Nakayama K. H. ; Surya V. N. ; Gole M. ; Walker T. W. ; Yang W. G. ; Lai E. S. ; Ostrowski M. A. ; Fuller G. G. ; Dunn A. R. ; Huang N. F. Nano Lett. 2016, 16 (1), 410.
doi: 10.1021/acs.nanolett.5b04028 |
8 |
Hynes R. O. Cell 2002, 110 (6), 673.
doi: 10.1016/s0092-8674(02)00971-6 |
9 |
Guo W. J. ; Giancotti F. G. Nat. Rev. Mol. Cell Biol. 2004, 5 (10), 816.
doi: 10.1038/nrm1490 |
10 |
Mitra S. K. ; Hanson D. A. ; Schlaepfer D. D. Nat. Rev. Mol. Cell Biol. 2005, 6 (1), 56.
doi: 10.1038/nrm1549 |
11 |
Li Z. H. ; Lee H. J. ; Zhu C. Exp. Cell Res. 2016, 349 (1), 85.
doi: 10.1016/j.yexcr.2016.10.001 |
12 |
Geiger B. ; Yamada K. M. CSH Perspect. Biol. 2011, 3 (5), 21.
doi: 10.1101/cshperspect.a005033 |
13 |
Jiang G. Y. ; Giannone G. ; Critchley D. R. ; Fukumoto E. ; Sheetz M. P. Nature 2003, 424 (6946), 334.
doi: 10.1038/nature01805 |
14 |
Kukkurainen S. ; Maatta J. A. ; Saeger J. ; Valjakka J. ; Vogel V. ; Hytonen V. P. Mol. Biosyst. 2014, 10 (12), 3217.
doi: 10.1039/c4mb00341a |
15 |
Yao M. X. ; Goult B. T. ; Chen H. ; Cong P. W. ; Sheetz M. P. ; Yan J. Sci. Rep. 2014, 4, 7.
doi: 10.1038/srep04610 |
16 |
Mitra S. K. ; Schlaepfer D. D. Curr. Opin. Cell Biol. 2006, 18 (5), 516.
doi: 10.1016/j.ceb.2006.08.011 |
17 |
Beningo K. A. ; Dembo M. ; Kaverina I. ; Small J. V. ; Wang Y. L. J. Cell Biol. 2001, 153 (4), 881.
doi: 10.1083/jcb.153.4.881 |
18 |
Scarpa E. ; Szabo A. ; Bibonne A. ; Theveneau E. ; Parsons M. ; Mayor R. Dev. Cell 2015, 34 (4), 421.
doi: 10.1016/j.devcel.2015.06.012 |
19 |
Yao M. X. ; Qiu W. ; Liu R. C. ; Efremov A. K. ; Cong P. W. ; Seddiki R. ; Payre M. ; Lim C. T. ; Ladoux B. ; Mege R. M. ; et al Nat. Commun. 2014, 5, 11.
doi: 10.1038/ncomms5525 |
20 |
Mui K. L. ; Chen C. S. ; Assoian R. K. J. Cell Sci. 2016, 129 (6), 1093.
doi: 10.1242/jcs.183699 |
21 |
Auernheimer V. ; Lautscham L. A. ; Leidenberger M. ; Friedrich O. ; Kappes B. ; Fabry B. ; Goldmann W. H. J. Cell Sci. 2015, 128 (18), 3435.
doi: 10.1242/jcs.172031 |
22 |
Gasparski A. N. ; Beningo K. A. Arch. Biochem. Biophys. 2015, 586, 20.
doi: 10.1016/j.abb.2015.07.017 |
23 |
Kiefel H. ; Bondong S. ; Hazin J. ; Ridinger J. ; Schirmer U. ; Riedle S. ; Altevogt P. Cell Adhes. Migr. 2012, 6 (4), 374.
doi: 10.4161/cam.20832 |
24 |
Colombo F. ; Meldolesi J. Trends Pharmacol. Sci. 2015, 36 (11), 769.
doi: 10.1016/j.tips.2015.08.004 |
25 |
Bershadsky A. ; Chausovsky A. ; Becker E. ; Lyubimova A. ; Geiger B. Curr. Biol. 1996, 6 (10), 1279.
doi: 10.1016/s0960-9822(02)70714-8 |
26 |
Padmakumar V. C. ; Libotte T. ; Lu W. S. ; Zaim H. ; Abraham S. ; Noegel A. A. ; Gotzmann J. ; Foisner R. ; Karakesisoglou L. J. Cell Sci. 2005, 118 (15), 3419.
doi: 10.1242/jcs.02471 |
27 |
Haque F. ; Lloyd D. J. ; Smallwood D. T. ; Dent C. L. ; Shanahan C. M. ; Fry A. M. ; Trembath R. C. ; Shackleton S. Mol. Cell. Biol. 2006, 26 (10), 3738.
doi: 10.1128/mcb.26.10.3738-3751.2006 |
28 |
Luxton G. W. G. ; Gomes E. R. ; Folker E. S. ; Vintinner E. ; Gundersen G. G. Science 2010, 329 (5994), 956.
doi: 10.1126/science.1189072 |
29 |
Guilluy C. ; Osborne L. D. ; Van Landeghem L. ; Sharek L. ; Superfine R. ; Garcia-Mata R. ; Burridge K. Nat. Cell Biol. 2014, 16 (4), 376.
doi: 10.1038/ncb2927 |
30 |
Fanucchi S. ; Shibayama Y. ; Burd S. ; Weinberg M. S. ; Mhlanga M. M. Cell 2013, 155 (3), 606.
doi: 10.1016/j.cell.2013.09.051 |
31 |
Dekker J. ; Mirny L. Cell 2016, 164 (6), 1110.
doi: 10.1016/j.cell.2016.02.007 |
32 |
Uhler C. ; Shivashankar G. V. Nat. Rev. Mol. Cell Biol. 2017, 18 (12), 717.
doi: 10.1038/nrm.2017.101 |
33 |
Lv L. W. ; Tang Y. M. ; Zhang P. ; Liu Y. S. ; Bai X. S. ; Zhou Y. S. Tissue Eng. Part B-Rev. 2018, 24 (2), 112.
doi: 10.1089/ten.teb.2017.0287 |
34 |
Jaalouk D. E. ; Lammerding J. Nat. Rev. Mol. Cell Biol. 2009, 10 (1), 63.
doi: 10.1038/nrm2597 |
35 |
Schwarz U. S. ; Soine J. R. D. Biochim. Biophys. Acta-Mol. Cell Res. 2015, 1853 (11), 3095.
doi: 10.1016/j.bbamcr.2015.05.028 |
36 |
Muller D. J. ; Dufrene Y. F. Trends Cell Biol. 2011, 21 (8), 461.
doi: 10.1016/j.tcb.2011.04.008 |
37 |
Ahmed W. W. ; Fodor E. ; Betz T. Biochim. Biophys. Acta-Mol. Cell Res. 2015, 1853 (11), 3083.
doi: 10.1016/j.bbamcr.2015.05.022 |
38 |
Castillo M. ; Ebensperger R. ; Wirtz D. ; Walczak M. ; Hurtado D. E. ; Celedon A. J. Biomed. Mater. Res. Part B 2014, 102 (8), 1779.
doi: 10.1002/jbm.b.33167 |
39 |
Berret J. F. Nat. Commun. 2016, 7, 10134.
doi: 10.1038/ncomms10134 |
40 |
Etoc F. ; Lisse D. ; Bellaiche Y. ; Piehler J. ; Coppey M. ; Dahan M. Nat. Nanotechnol. 2013, 8 (3), 193.
doi: 10.1038/nnano.2013.23 |
41 |
Tan J. L. ; Tien J. ; Pirone D. M. ; Gray D. S. ; Bhadriraju K. ; Chen C. S. Pro. Nat. Acad. Sci. U.S.A. 2003, 100 (4), 1484.
doi: 10.1073/pnas.0235407100 |
42 |
Yao L. ; Xu S. J. Angew. Chem.-Int. Edit. 2013, 52 (52), 14041.
doi: 10.1002/anie.201007297 |
43 |
Yao L. ; Li Y. ; Tsai T. W. ; Xu S. J. ; Wang Y. H. Angew. Chem. Int. Ed. 2013, 52 (52), 14041.
doi: 10.1002/anie.201307419 |
44 |
Yao L. ; Xu S. J. J. Phys. Chem. B 2012, 116 (33), 9944.
doi: 10.1021/jp304335a |
45 |
Zhang D. ; Feng F. ; Li Q. L. ; Wang X. Y. ; Yao L. Biomaterials 2018, 173, 22.
doi: 10.1016/j.biomaterials.2018.04.045 |
46 |
Yu C. ; Zhang D. ; Feng X. ; Chai Y. ; Lu P. ; Li Q. ; Feng F. ; Wang X. ; Li Y. ; et al Nanoscale 2019, 11 (16), 7648.
doi: 10.1039/c8nr10338k |
47 |
Qin Y. ; Chen K. ; Gu W. ; Dong X. ; Lei R. ; Chang Y. ; Bai X. ; Xia S. ; Zeng L. ; Zhang J. Nanoscale Res. Lett. 2015, 16 (1), 54.
doi: 10.1186/s12951-018-0380-z |
48 |
Peng F. ; Setyawati M. I. ; Tee J. K. ; Ding X. G. ; Wang J. P. ; Nga M. E. ; Ho H. K. ; Leong D. T. Nat. Nanotechnol. 2019, 14 (3), 279.
doi: 10.1038/s41565-018-0356-z |
49 |
Pottler M. ; Fliedner A. ; Schreiber E. ; Janko C. ; Friedrich R. P. ; Bohr C. ; Dollinger M. ; Alexiou C. ; Durr S. Nanoscale Res. Lett. 2017, 12 (1), 284.
doi: 10.1186/s11671-017-2045-5 |
50 |
Li Y. ; Jing L. ; Yu Y. ; Yu Y. ; Duan J. ; Yang M. ; Geng W. ; Jiang L. ; Li Q. ; Sun Z. Part. Part. Sys. Charact. 2015, 32 (6), 636.
doi: 10.1002/ppsc.201400180 |
51 |
Xie H. ; Wang P. ; Wu J. Artif. Cells Nanomed Biotechnol. 2019, 47 (1), 260.
doi: 10.1080/21691401.2018.1552594 |
52 |
Soenen S. J. H. ; Nuytten N. ; De Meyer S. F. ; De Smedt S. C. ; De Cuyper M. Small 2010, 6 (7), 832.
doi: 10.1002/smll.200902084 |
53 |
Qin H. ; Zhu C. ; An Z. ; Jiang Y. ; Zhao Y. ; Wang J. ; Liu X. ; Hui B. ; Zhang X. ; Wang Y. Int. J. Nanomed. 2014, 9, 2469.
doi: 10.2147/IJN.S59753 |
54 |
Calzado-Martin A. ; Encinar M. ; Tamayo J. ; Calleja M. ; Paulo A. S. ACS Nano 2016, 10 (3), 3365.
doi: 10.1021/acsnano.5b07162 |
55 |
Mao H. ; Li J. ; Dulinska-Molak I. ; Kawazoe N. ; Takeda Y. ; Mamiya H. ; Chen G. Biomater. Sci. 2015, 3 (9), 1284.
doi: 10.1039/c5bm00141b |
56 |
Ogneva I. V. ; Buravkov S. V. ; Shubenkov A. N. ; Buravkova L. B. Nanoscale Res. Lett. 2014, 9
doi: 10.1186/1556-276x-9-284 |
57 |
Tian X. ; Yang Z. ; Duan G. ; Wu A. ; Gu Z. ; Zhang L. ; Chen C. ; Chai Z. ; Ge C. ; Zhou R. Small 2017, 13 (3)
doi: 10.1002/smll.201602133 |
58 |
Sun Q. ; Kanehira K. ; Taniguchi A. Sci. Technol. Adv. Mater. 2018, 19 (1), 271.
doi: 10.1080/14686996.2018.1444318 |
59 |
Vieira L. F. A. ; Lins M. P. ; Viana I. ; Dos Santos J. E. ; Smaniotto S. ; Reis M. Nanoscale Res. Lett. 2017, 12 (1), 200.
doi: 10.1186/s11671-017-1982-3 |
[1] | 段欣漩, Sendeku Marshet Getaye, 张道明, 周道金, 徐立军, 高学庆, 陈爱兵, 邝允, 孙晓明. 钨掺杂镍铁水滑石高效电催化析氧反应[J]. 物理化学学报, 2024, 40(1): 2303055 - . |
[2] | 罗耀武, 王定胜. 单原子催化剂电子结构调控实现高效多相催化[J]. 物理化学学报, 2023, 39(9): 2212020 -0 . |
[3] | 卢俊文, 张书南, 周浩志, 黄超杰, 夏林, 刘晓放, 罗虎, 王慧. 负载Ir单原子和团簇的α-MoC催化剂用于高效催化CO2加氢制CO[J]. 物理化学学报, 2023, 39(11): 2302021 - . |
[4] | 邵长香, 曲良体. 水的气-液相转变获取电能研究进展[J]. 物理化学学报, 2023, 39(10): 2306004 - . |
[5] | 吴明亮, 章烨晖, 付战照, 吕之阳, 李强, 王金兰. 原子尺度钴基氮碳催化剂对析氧反应的构效关系的研究[J]. 物理化学学报, 2023, 39(1): 2207007 -0 . |
[6] | 毛赫南, 王晓工. 影响高浓度氧化石墨烯分散液流变行为的重要因素及群体平衡动力学分析[J]. 物理化学学报, 2022, 38(4): 2004025 - . |
[7] | 孙志聪, 罗二桂, 孟庆磊, 王显, 葛君杰, 刘长鹏, 邢巍. 采用薄层氮化碳促进的高性能钯基催化剂用于甲酸分解制氢[J]. 物理化学学报, 2022, 38(3): 2003035 - . |
[8] | 陈志洋, 唐雅婷, 吕泽, 孟霄汉, 梁前伟, 冯建国. 香茅油纳米乳剂的构建、表征、抗菌性能和细胞毒性[J]. 物理化学学报, 2022, 38(12): 2205053 - . |
[9] | 李宇明, 刘海超. 负载Pt-WOx催化剂上甘油选择氢解合成1, 3-丙二醇[J]. 物理化学学报, 2022, 38(10): 2207014 - . |
[10] | 李喜宝, 刘积有, 黄军同, 何朝政, 冯志军, 陈智, 万里鹰, 邓芳. 全有机S型异质结PDI-Ala/S-C3N4光催化剂增强光催化性能[J]. 物理化学学报, 2021, 37(6): 2010030 - . |
[11] | 李聪明, 陈阔, 王晓月, 薛楠, 杨恒权. 探究Cu/ZnO相互作用对CO2加氢制甲醇反应性能的影响[J]. 物理化学学报, 2021, 37(5): 2009101 - . |
[12] | 阙海峰, 江华宁, 王兴国, 翟朋博, 孟令佳, 张鹏, 宫勇吉. 二维材料范德华间隙的利用[J]. 物理化学学报, 2021, 37(11): 2010051 - . |
[13] | 吴智伟, 丁伟璐, 张雅琴, 王艳磊, 何宏艳. 咪唑类离子液体与酪氨酸相互作用及机理的密度泛函理论研究[J]. 物理化学学报, 2021, 37(10): 2002021 - . |
[14] | 王苗, 郑虹宁, 许菲. 异氰酸苯酯诱导的类胶原多肽自组装[J]. 物理化学学报, 2021, 37(10): 1911039 - . |
[15] | 李凯旋, 张泰隆, 李会增, 李明珠, 宋延林. 纳米粒子的精准组装[J]. 物理化学学报, 2020, 36(9): 1911057 - . |
|