物理化学学报 >> 2023, Vol. 39 >> Issue (9): 2212020.doi: 10.3866/PKU.WHXB202212020
所属专题: 多物理场能源催化转化
收稿日期:
2022-12-12
录用日期:
2023-01-17
发布日期:
2023-04-03
通讯作者:
王定胜
E-mail:wangdingsheng@mail.tsinghua.edu.cn
Received:
2022-12-12
Accepted:
2023-01-17
Published:
2023-04-03
Contact:
Dingsheng Wang
E-mail:wangdingsheng@mail.tsinghua.edu.cn
摘要:
过去十年见证了单原子催化领域的快速发展,其最高的原子利用效率和充分暴露的活性位点使得单原子催化剂对众多反应的催化活性具有显著提升。在单原子催化领域的早期发展阶段,研究者只是关注单原子催化剂催化活性与催化选择性的提高,而其内在的反应机理以及活性位点同催化性能之间的构效关系往往被忽视。关于单原子催化剂中金属-基底相互作用的深入探讨能够帮助我们理解催化机理,并进一步指导多相催化剂的理性设计。值得注意的是,由于单原子催化剂均一的活性位点及其几何构型,我们可以通过理论计算以及一些原位的表征技术,来揭示其中的金属-基底相互作用,继而进一步促进单原子催化领域的发展以及多相催化剂的理性设计。这篇综述总结了金属-基底相互作用的基本概念,其作用,以及其在一些重要多相催化中的应用,最后提出了金属-基底相互作用在单原子催化领域所面临的挑战与机遇。
罗耀武, 王定胜. 单原子催化剂电子结构调控实现高效多相催化[J]. 物理化学学报, 2023, 39(9), 2212020. doi: 10.3866/PKU.WHXB202212020
Yaowu Luo, Dingsheng Wang. Enhancing Heterogeneous Catalysis by Electronic Property Regulation of Single Atom Catalysts[J]. Acta Phys. -Chim. Sin. 2023, 39(9), 2212020. doi: 10.3866/PKU.WHXB202212020
Fig 1
(a) Frames from in situ ETEM acquired at various temperatures and times of Pd-NPs@ZIF-8 pyrolyzing. (b, c) Average diameter and number of particles in (b) different temperatures and (c) different pyrolyzing time at 1000 ℃. (d) Calculated energies along the stretching pathway of the Pd atom from the Pd10 cluster to Pd-N4 defect by CI-NEB, and the corresponding initial and final configurations. (a–d) Adapted with permission from Ref. 80, Copyright 2018, Springer."
Fig 2
(a) The proposed reaction pathways and the calculated energies. Corresponding structures for each step in (b) pathway I and (c) pathway II and the barrier energy of RDS. (d) The proposed synergetic DMAS (Fe(a) and Ir1) and two intermediates (ii and ii-a). (a–d) Adapted with permission from Ref. 62, Copyright 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim."
Fig 3
(a) Adsorption patterns of ethylene on Pd catalysts. (b) Pd K-edge XANES profiles. (c) Energy profile of acetylene hydrogenation. (d, e) DFT calculation of the semi-hydrogenation of acetylene on (d) Pd-N4 and (e) the Pd(111) surface. (f) Interaction of Pd atom with PN within Pd1-N8 complex. (g) MS signal (m/e = 26) for each C2H2-TPD measurement. (a) Adapted with permission from Ref. 86, Copyright 2020, American Chemical Society. (b, c) Adapted with permission from Ref. 98, Copyright 2018, American Chemical Society. (d, e) Adapted with permission from Ref. 80, Copyright 2018, Springer. (f, g) Adapted with permission from Ref. 97, Copyright 2020, Elsevier Inc."
Fig 4
(a) In situ STEM images recorded the transformation process of Pd. (b) Illustration showing the size evolution of Pd NPs. (c) ATR-IR spectra of 1% Pd1/α-MoC and commercial Pd/C. (d–j) The energy profiles for C6H5NO2 hydrogenation into C6H5NH2 on Pt1/α-MoC(111). (k–l) Reaction energy profiles of nitrobenzene hydrogenation and charge density difference of PhNO2 on (k) Fe1/N-C and (l) Fe (100). (a–c) Adapted with permission from Ref. 105, Copyright 2020 Wiley-VCH GmbH. (d–j) Adapted with permission from Ref. 103, Copyright 2019, Springer. (k, l) Adapted with permission from Ref. 107, Copyright 2020, Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature."
Fig 5
(a) DFT calculated stable Rh1-S4 configuration. (b) DFT calculations of the reaction cycle of selective crotonaldehyde hydrogenation. (c, d) Catalytic mechanism of Pd1/TiO2 in hydrogenation reactions: (c) Energies and model of intermediates and transition states in the heterolytic H2 activation process for Pd1/TiO2, (d) Primary isotope effect observed for Pd1/TiO2 in styrene hydrogenation. (e) Free energy difference of ethanol dehydrogenation on Ni and N sites of Ni−N4. (f, g) H radical on the (f) Ni site and (g) N site of Ni−N4 and their corresponding adsorption energy. (h, i) Calculated energy profiles of TH of HMF via the hydroxyl route and alkoxy route. (j) Proposed mechanism of TH of HMF over Ni−N4. (a, b) Adapted with permission from Ref. 109, Copyright 2019, American Chemical Society. (c, d) Adapted with permission from Ref. 63, Copyright 2016, The American Association for the Advancement of Science. (e–j) Adapted with permission from Ref. 110, Copyright 2021, American Chemical Society."
Fig 6
(a) Schematic illustration of the synthesis of Ru1/LDH-VIII, Ru1/LDH-VII, and Ru1/LDH by defect engineering strategy. (b) Calculated reaction profiles for the oxidation of benzyl alcohol. (c, d) Reaction profile of benzyl alcohol: (c) Reaction pathway and corresponding energy for the aerobic oxidation of benzyl alcohol on Pd1 and Pd6, (d) Additional reaction pathways on Pd6/CeO2 and corresponding energy. (e, f) Signal of H218O and H216O obtained during ethanol oxidation with (e) 18O2 and (f) 16O2. (g) Proposed reaction pathways for ethanol oxidation on the Au1/CeO2 catalyst. (a, b) Adapted with permission from Ref. 114, Copyright 2021 Wiley-VCH GmbH. (c, d) Adapted with permission from Ref. 117, Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (e–g) Adapted with permission from Ref. 115, Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim."
Fig 7
(a) Schematic diagram of the preparation process of the Co1/P-NC catalyst. (b–f) Crystal structures of Hf-MOF-808-V collected at 100 K. (b) 3D structure (c) the magnified Fig. of the node. (d–f) the crystal structures of the node and structure representations for clarity. In (d)–(f), the side views of the MOF node are shown. (g) Catalytic reaction scheme of 1 to form 2. (h) Reaction time profiles for the catalytic oxidation of 1 to 2. Inset is the structure of the putative active site of the Hf-MOF-808-V catalyst. (a) Adapted with permission from Ref. 112, Copyright 2016 Royal Society of Chemistry. (b–h) Adapted with permission from Ref. 119, Copyright 2018, American Chemical Society."
Fig 8
(a) Comparison of specific reaction rates among different catalysts. (b) Calculated adsorption energies of CO* and OH* in Mo site mechanism over different catalysts. (c) Relationship between the d-band filling and the d-band center (εd) values of the active Mo atoms. (d) Relationship between the εd of Mo sites and the energy barrier of CO* + OH* → COOH* following Mo site mechanism. (a) Adapted with permission from Ref. 83, Copyright 2021, American Chemical Society. (b–d) Adapted with permission from Ref. 130, Copyright 2021, American Chemical Society."
Fig 9
The reaction paths for the WGS reaction on Au15/α-MoC(111). (a) H2O dissociation and CO reforming at lower coverage, (b) O-assisted H2O dissociation on the boundary oxidized by three O atoms. (c) CO conversion over different catalysts at various temperatures. (d) Schematic of the reaction routes for the WGS reaction over Pt/α-MoC. The asterisk represents the active site. (a, b) Adapted with permission from Ref. 131, Copyright 2017, The American Association for the Advancement of Science. (c, d) Adapted with permission from Ref. 70, Copyright 2021, Springer."
Fig 10
(a) One-pot encapsulation of atomically dispersed Rh in POPs. (b) Proposed reaction route for the hydroformylation of styrene by coupling with LWGS. (c) Free energy profiles of the branched, and linear reaction pathways for styrene hydroformylation. (d) Plausible Reaction Mechanism for Hydroformylation of α-Olefin Catalyzed by Rh−Co−Pi/ZnO. (a) Adapted with permission from Ref. 137, Copyright 2021 Elsevier Inc. (b) Adapted with permission from Ref. 128, Copyright 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Adapted with permission from Ref. 140, Copyright 2021, Springer. (d) Adapted with permission from Ref. 142, Copyright 2021, American Chemical Society."
1 |
Fechete, I.; Wang, Y.; Védrine, J. C. Catal. Today 2012, 189, 2.
doi: 10.1016/j.cattod.2012.04.003 |
2 |
Kumar, A.; Daw, P.; Milstein, D. Chem. Rev. 2022, 122, 385.
doi: 10.1021/acs.chemrev.1c00412 |
3 |
Bai, S. T.; De Smet, G.; Liao, Y.; Sun, R.; Zhou, C.; Beller, M.; Maes, B. U. W.; Sels, B. F. Chem. Soc. Rev. 2021, 50, 4259.
doi: 10.1039/d0cs01331e |
4 |
Yang, X.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Acc. Chem. Res. 2013, 46, 1740.
doi: 10.1021/ar300361m |
5 |
Li, Z.; Ji, S.; Liu, Y.; Cao, X.; Tian, S.; Chen, Y.; Niu, Z.; Li, Y. Chem. Rev. 2020, 120, 623.
doi: 10.1021/acs.chemrev.9b00311 |
6 |
Cui, X.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Nat. Catal. 2018, 1, 385.
doi: 10.1038/s41929-018-0090-9 |
7 |
Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634.
doi: 10.1038/nchem.1095 |
8 |
Cui, T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z.; Li, J.; Lei, Y.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, e202115219.
doi: 10.1002/anie.202115219 |
9 |
Zhang, N.; Zhang, X.; Kang, Y.; Ye, C.; Jin, R.; Yan, H.; Lin, R.; Yang, J.; Xu, Q.; Wang, Y.; et al. Angew. Chem. Int. Ed. 2021, 60, 13388.
doi: 10.1002/anie.202101559 |
10 |
Wang, B.; Cheng, C.; Jin, M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, e202207268.
doi: 10.1002/anie.202207268 |
11 |
Li, W. H.; Yang, J.; Wang, D. Angew. Chem. Int. Ed. 2022, e202213318.
doi: 10.1002/anie.202213318 |
12 |
Zheng, X.; Li, B.; Wang, Q.; Wang, D.; Li, Y. Nano Res. 2022, 15, 7806.
doi: 10.1007/s12274-022-4429-9 |
13 |
Zhang, Z.; Zhang, L.; Wang, X.; Feng, Y.; Liu, X.; Sun, W. Nano Res. 2022, 16, 343.
doi: 10.1007/s12274-022-4823-3 |
14 |
Shen, Q.; Jin, H.; Li, P.; Yu, X.; Zheng, L.; Song, W.; Cao, C. Nano Res. 2022, 15, 5024.
doi: 10.1007/s12274-022-4235-4 |
15 |
Liu, Z.; Du, Y.; Yu, R.; Zheng, M.; Hu, R.; Wu, J.; Xia, Y.; Zhuang, Z.; Wang, D. Angew. Chem. Int. Ed. 2022, 62, e202212653.
doi: 10.1002/anie.202212653 |
16 |
Zhuang, Z.; Xia, L.; Huang, J.; Zhu, P.; Li, Y.; Ye, C.; Xia, M.; Yu, R.; Lang, Z.; Zhu, J.; et al. Angew. Chem. Int. Ed. 2022, e202212335.
doi: 10.1002/anie.202212335 |
17 |
Zhu, P.; Xiong, X.; Wang, D. Nano Res. 2022, 15, 5792.
doi: 10.1007/s12274-022-4265-y |
18 |
Wang, Y.; Zheng, X.; Wang, D. Nano Res. 2021, 15, 1730.
doi: 10.1007/s12274-021-3794-0 |
19 |
Hu, P.; Huang, Z.; Amghouz, Z.; Makkee, M.; Xu, F.; Kapteijn, F.; Dikhtiarenko, A.; Chen, Y.; Gu, X.; Tang, X. Angew. Chem. Int. Ed. 2014, 53, 3418.
doi: 10.1002/anie.201309248 |
20 |
Li, R.; Wang, D. Nano Res. 2022, 15, 6888.
doi: 10.1007/s12274-022-4371-x |
21 |
Li, Z.; Liu, F.; Jiang, Y.; Ni, P.; Zhang, C.; Wang, B.; Chen, C.; Lu, Y. Nano Res. 2022, 15, 4411.
doi: 10.1007/s12274-021-4029-0 |
22 |
Jiang, B.; Guo, Z.; Liang, M. Nano Res. 2022,
doi: 10.1007/s12274-022-4856-7 |
23 |
S. J. Tauster; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100, 170.
doi: 10.1021/ja00469a029 |
24 |
Bruix, A.; Rodriguez, J. A.; Ramirez, P. J.; Senanayake, S. D.; Evans, J.; Park, J. B.; Stacchiola, D.; Liu, P.; Hrbek, J.; Illas, F. J. Am. Chem. Soc. 2012, 134, 8968.
doi: 10.1021/ja302070k |
25 |
Campbell, C. T. Nat. Chem. 2012, 4, 597.
doi: 10.1038/nchem.1412 |
26 |
Uzun, A.; Ortalan, V.; Browning, N. D.; Gates, B. C. J. Catal. 2010, 269, 318.
doi: 10.1016/j.jcat.2009.11.017 |
27 | Chen, Y.; Wang, L.; Yao, Z.; Hao, L.; Tan, X.; Masa, J.; Robertson, A. W.; Sun, Z. Acta Phys. -Chim. Sin. 2022, 38, 2207024. |
陈宇新, 王丽君, 姚志波, 郝磊端, 谭心怡, Masa, J., Robertson, A. W., 孙振宇. 物理化学学报, 2022, 38, 2207024.
doi: 10.3866/PKU.WHXB202207024 |
|
28 |
Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chem. Rev. 2020, 120, 11900.
doi: 10.1021/acs.chemrev.9b00818 |
29 |
Liu, J. ACS Catal. 2016, 7, 34.
doi: 10.1021/acscatal.6b01534 |
30 |
Chen, Y.; Ji, S.; Zhao, S.; Chen, W.; Dong, J.; Cheong, W. C.; Shen, R.; Wen, X.; Zheng, L.; Rykov, A. I.; et al. Nat. Commun. 2018, 9, 5422.
doi: 10.1038/s41467-018-07850-2 |
31 |
Chen, Y.; Ji, S.; Wang, Y.; Dong, J.; Chen, W.; Li, Z.; Shen, R.; Zheng, L.; Zhuang, Z.; Wang, D.; et al. Angew. Chem. Int. Ed. 2017, 56, 6937.
doi: 10.1002/anie.201702473 |
32 |
Wei, S.; Wang, Y.; Chen, W.; Li, Z.; Cheong, W. C.; Zhang, Q.; Gong, Y.; Gu, L.; Chen, C.; Wang, D.; et al. Chem. Sci. 2019, 11, 786.
doi: 10.1039/c9sc05005 |
33 |
Chen, S.; Li, W. H.; Jiang, W.; Yang, J.; Zhu, J.; Wang, L.; Ou, H.; Zhuang, Z.; Chen, M.; Sun, X.; et al. Angew. Chem. Int. Ed. 2022, 61, e202114450.
doi: 10.1002/anie.202114450 |
34 |
Zhang, E.; Tao, L.; An, J.; Zhang, J.; Meng, L.; Zheng, X.; Wang, Y.; Li, N.; Du, S.; Zhang, J.; et al. Angew. Chem. Int. Ed. 2022, 61, e202117347.
doi: 10.1002/anie.202117347 |
35 |
Zhang, Z.; Zhu, J.; Chen, S.; Sun, W.; Wang, D. Angew. Chem. Int. Ed. 2022, 62, e202215136.
doi: 10.1002/anie.202215136 |
36 |
Chen, Y.; Ji, S.; Sun, W.; Lei, Y.; Wang, Q.; Li, A.; Chen, W.; Zhou, G.; Zhang, Z.; Wang, Y.; et al. Angew. Chem. Int. Ed. 2020, 59, 1295.
doi: 10.1002/anie.201912439 |
37 |
Fan, Q.; Gao, P.; Ren, S.; Qu, Y.; Kong, C.; Yang, J.; Wu, Y. Nano Res. 2022,
doi: 10.1007/s12274-022-4472-6 |
38 |
hang, N.; Zhang, X.; Tao, L.; Jiang, P.; Ye, C.; Lin, R.; Huang, Z.; Li, A.; Pang, D.; Yan, H.; et al. Angew. Chem. Int. Ed. 2021, 60, 6170.
doi: 10.1002/anie.202014718 |
39 |
Qu, Y.; Li, Z.; Chen, W.; Lin, Y.; Yuan, T.; Yang, Z.; Zhao, C.; Wang, J.; Zhao, C.; Wang, X.; et al. > Nat. Catal. 2018, 1, 781.
doi: 10.1038/s41929-018-0146-x |
40 |
Moliner, M.; Gabay, J. E.; Kliewer, C. E.; Carr, R. T.; Guzman, J.; Casty, G. L.; Serna, P.; Corma, A. J. Am. Chem. Soc. 2016, 138, 15743.
doi: 10.1021/jacs.6b10169 |
41 |
Gao, C.; Low, J.; Long, R.; Kong, T.; Zhu, J.; Xiong, Y. Chem. Rev. 2020, 120, 12175.
doi: 10.1021/acs.chemrev.9b00840 |
42 |
Cui, X.; Wang, J.; Liu, B.; Ling, S.; Long, R.; Xiong, Y. J. Am. Chem. Soc. 2018, 140, 16514.
doi: 10.1021/jacs.8b06723 |
43 |
Frenkel, A. I. Chem. Soc. Rev. 2012, 41, 8163.
doi: 10.1039/c2cs35174a |
44 |
Hall, E. R.; Pollock, C. J.; Bendix, J.; Collins, T. J.; Glatzel, P.; DeBeer, S. J. Am. Chem. Soc. 2014, 136, 10076.
doi: 10.1021/ja504206y |
45 |
Ding, K.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Science 2015, 350, 189.
doi: 10.1126/science.aac6368 |
46 |
Gu, Y.; Xi, B. J.; Zhang, H.; Ma, Y. C.; Xiong, S. L. Angew. Chem. Int. Ed. 2022, 61, e202202200.
doi: 10.1002/anie.202202200 |
47 |
Yang, J.; Li, W.; Wang, D.; Li, Y. Adv. Mater. 2020, 32, e2003300.
doi: 10.1002/adma.202003300 |
48 |
Zhang, J.; Zheng, C.; Zhang, M.; Qiu, Y.; Xu, Q.; Cheong, W. -C.; Chen, W.; Zheng, L.; Gu, L.; Hu, Z.; et al. Nano Res. 2020, 13, 3082.
doi: 10.1007/s12274-020-2977-4 |
49 |
Huang, K.; Fu, H.; Shi, W.; Wang, H.; Cao, Y.; Yang, G.; Peng, F.; Wang, Q.; Liu, Z.; Zhang, B.; et al. J. Catal. 2019, 377, 283.
doi: 10.1016/j.jcat.2019.06.047 |
50 |
Li, Z.; Fan, T.; Li, H.; Lu, X.; Ji, S.; Zhang, J.; Horton, J. H.; Xu, Q.; Zhu, J. Small 2022, 18, 2106614.
doi: 10.1002/smll.202106614 |
51 |
Zhao, J.; Ji, S.; Guo, C.; Li, H.; Dong, J.; Guo, P.; Wang, D.; Li, Y.; Toste, F. D. Nat. Catal. 2021, 4, 523.
doi: 10.1038/s41929-021-00637-7 |
52 |
Cao, T.; Lin, R.; Liu, S.; Cheong, W. -C. M.; Li, Z.; Wu, K.; Zhu, Y.; Wang, X.; Zhang, J.; Li, Q.; et al. Nano Res. 2022, 15, 3959.
doi: 10.1007/s12274-022-4076-1 |
53 |
Li, W. H.; Ye, B. C.; Yang, J.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, e202209749.
doi: 10.1002/anie.202209749 |
54 |
Xiong, Y.; Sun, W.; Han, Y.; Xin, P.; Zheng, X.; Yan, W.; Dong, J.; Zhang, J.; Wang, D.; Li, Y. Nano Res. 2021, 14, 2418.
doi: 10.1007/s12274-020-3244-4 |
55 |
Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C.; Li, J.; Wei, S.; Lu, J. J. Am. Chem. Soc. 2015, 137, 10484.
doi: 10.1021/jacs.5b06485 |
56 |
Wang, G.; Chen, Z.; Wang, T.; Wang, D.; Mao, J. Angew. Chem. Int. Ed. 2022, e202210789.
doi: 10.1002/anie.202210789 |
57 |
Sun, X.; Sun, L.; Li, G.; Tuo, Y.; Ye, C.; Yang, J.; Low, J.; Yu, X.; Bitter, J. H.; Lei, Y.; et al. Angew. Chem. Int. Ed. 2022, e202207677.
doi: 10.1002/anie.202207677 |
58 |
Hu, B.; Huang, A.; Zhang, X.; Chen, Z.; Tu, R.; Zhu, W.; Zhuang, Z.; Chen, C.; Peng, Q.; Li, Y. Nano Res. 2021, 14, 3482.
doi: 10.1007/s12274-021-3535-4 |
59 |
Peng, J.-X.; Yang, W.; Jia, Z.; Jiao, L.; Jiang, H.-L. Nano Res. 2022, 15, 10063.
doi: 10.1007/s12274-022-4467-3 |
60 |
Chen, Y.; Gao, R.; Ji, S.; Li, H.; Tang, K.; Jiang, P.; Hu, H.; Zhang, Z.; Hao, H.; Qu, Q.; et al. Angew. Chem. Int. Ed. 2021, 60, 3212.
doi: 10.1002/anie.202012798 |
61 |
Sun, X.; Tuo, Y.; Ye, C.; Chen, C.; Lu, Q.; Li, G.; Jiang, P.; Chen, S.; Zhu, P.; Ma, M.; et al. Angew. Chem. Int. Ed. 2021, 60, 23614.
doi: 10.1002/anie.202110433 |
62 |
Liang, J.-X.; Lin, J.; Liu, J.; Wang, X.; Zhang, T.; Li, J. Angew. Chem. Int. Ed. 2020, 59, 12868.
doi: 10.1002/anie.201914867 |
63 |
Liu, P.; Zhao, Y.; Qin, R.; Mo, S.; Chen, G.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D.; et al. Science 2016, 352, 797.
doi: 10.1126/science.aaf5251 |
64 |
Li, Z.; Zhang, M.; Zhang, L.; Dong, X.; Leng, L.; Horton, J. H.; Wang, J. Nano Res. 2022, 15, 1338.
doi: 10.1007/s12274-021-3662-y |
65 |
Hou, Z.; Dai, L.; Deng, J.; Zhao, G.; Jing, L.; Wang, Y.; Yu, X.; Gao, R.; Tian, X.; Dai, H.; et al. Angew. Chem. Int. Ed. 2022, 61, e202201655.
doi: 10.1002/anie.202201655 |
66 |
Xiao, K.; Lin, R.-T.; Wei, J.-X.; Li, N.; Li, H.; Ma, T.; Liu, Z.-Q. Nano Res. 2022, 15, 4980.
doi: 10.1007/s12274-022-4140-x |
67 | Zhou, X. Acta Phys. -Chim. Sin. 2020, 37, 2008064. |
周雪梅. 物理化学学报, 2020, 37, 2008064.
doi: 10.3866/PKU.WHXB202008064 |
|
68 |
Lin, L.; Wei, F.; Jiang, R.; Huang, Y.; Lin, S. Nano Res. 2022, 16, 309.
doi: 10.1007/s12274-022-4800-x |
69 |
Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y. W.; et al. Nature 2017, 544, 80.
doi: 10.1038/nature21672 |
70 |
Zhang, X.; Zhang, M.; Deng, Y.; Xu, M.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B.; Yao, S.; Zhang, X.; et al. Nature 2021, 589, 396.
doi: 10.1038/s41586-020-03130-6 |
71 |
Yang, J.; Li, W. H.; Tan, S.; Xu, K.; Wang, Y.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2021, 60, 19085.
doi: 10.1002/anie.202107123 |
72 |
Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Angew. Chem. Int. Ed. 2016, 55, 2058.
doi: 10.1002/anie.201509241 |
73 |
Sun, X.; Chen, C.; Xiong, C.; Zhang, C.; Zheng, X.; Wang, J.; Gao, X.; Yu, Z.-Q.; Wu, Y. Nano Res. 2022, 16, 917.
doi: 10.1007/s12274-022-4802-8 |
74 |
Lin, J.; Wang, A.; Qiao, B.; Liu, X.; Yang, X.; Wang, X.; Liang, J.; Li, J.; Liu, J.; Zhang, T. J. Am. Chem. Soc. 2013, 135, 15314.
doi: 10.1021/ja408574m |
75 |
Mao, J.; He, C. T.; Pei, J.; Chen, W.; He, D.; He, Y.; Zhuang, Z.; Chen, C.; Peng, Q.; Wang, D.; et al. Nat. Commun. 2018, 9, 4958.
doi: 10.1038/s41467-018-07288-6 |
76 |
an, A.; Wang, X.; Tang, K.; Zhang, Z.; Ye, C.; Kong, K.; Hu, H.; Zheng, L.; Jiang, P.; Zhao, C.; et al. Angew. Chem. Int. Ed. 2021, 60, 19262.
doi: 10.1002/anie.202105186 |
77 |
Zheng, X.; Yang, J.; Xu, Z.; Wang, Q.; Wu, J.; Zhang, E.; Dou, S.; Sun, W.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, e202205946.
doi: 10.1002/anie.202205946 |
78 |
Wang, Y.; Zheng, M.; Li, Y.; Ye, C.; Chen, J.; Ye, J.; Zhang, Q.; Li, J.; Zhou, Z.; Fu, X. Z.; et al. Angew. Chem. Int. Ed. 2022, 16, e202115735.
doi: 10.1002/anie.202115735 |
79 |
Yang, W.; Zhao, X.; Wang, Y.; Wang, R.; Yang, W.; Peng, Y.; Li, J. Nano Res. 2022, 16, 219.
doi: 10.1007/s12274-022-4690-y |
80 |
Wei, S.; Li, A.; Liu, J. C.; Li, Z.; Chen, W.; Gong, Y.; Zhang, Q.; Cheong, W. C.; Wang, Y.; Zheng, L.; et al. Nat. Nanotechnol. 2018, 13, 856.
doi: 10.1038/s41565-018-0197-9 |
81 |
Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. J. Mol. Catal. A: Chem. 1997, 115, 421.
doi: 10.1016/S1381-1169(96)00348-2 |
82 |
Liu, S.; Li, Z.; Wang, C.; Tao, W.; Huang, M.; Zuo, M.; Yang, Y.; Yang, K.; Zhang, L.; Chen, S.; et al. Nat. Commun. 2020, 11, 938.
doi: 10.1038/s41467-020-14565-w |
83 |
Sun, L.; Xu, J.; Liu, X.; Qiao, B.; Li, L.; Ren, Y.; Wan, Q.; Lin, J.; Lin, S.; Wang, X.; et al. ACS Catal. 2021, 11, 5942.
doi: 10.1021/acscatal.1c00231 |
84 |
Di, J.; Chen, C.; Yang, S. -Z.; Chen, S.; Duan, M.; Xiong, J.; Zhu, C.; Long, R.; Hao, W.; Chi, Z.; et al. Nat. Commun. 2019, 10, 2840.
doi: 10.1038/s41467-019-10392-w |
85 |
Meemken, F.; Baiker, A. Chem. Rev. 2017, 117, 11522.
doi: 10.1021/acs.chemrev.7b00272 |
86 |
Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Chem. Rev. 2020, 120, 683.
doi: 10.1021/acs.chemrev.9b00230 |
87 |
Li, Z.; Leng, L.; Lu, X.; Zhang, M.; Xu, Q.; Horton, J. H.; Zhu, J. Nano Res. 2022, 15, 3114.
doi: 10.1007/s12274-021-4028-1 |
88 |
Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Science 2008, 320, 1320.
doi: 10.1126/science.1156660 |
89 | Collins, B M. Selective Hydrogenation of Highly Unsaturated Hydrocarbons in The Presence of Less Unsaturated Hydrocarbons. US 4126645, 1978. |
90 |
Vilé, G.; Albani, D.; Almora-Barrios, N.; López, N.; Pérez-Ramírez, J. ChemCatChem 2016, 8, 21.
doi: 10.1002/cctc.201501269 |
91 |
Bridier, B.; Lopez, N.; Perez-Ramirez, J. Dalton Trans. 2010, 39, 8412.
doi: 10.1039/c0dt00010h |
92 |
McCue, A. J.; Guerrero-Ruiz, A.; Ramirez-Barria, C.; Rodríguez-Ramos, I.; Anderson, J. A. J. Catal. 2017, 355, 40.
doi: 10.1016/j.jcat.2017.09.004 |
93 |
Pei, G. X.; Liu, X. Y.; Wang, A.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X.; Yang, X.; Wang, X.; Tai, Z.; et al. ACS Catal. 2015, 5, 3717.
doi: 10.1021/acscatal.5b00700 |
94 |
Pei, G. X.; Liu, X. Y.; Wang, A.; Li, L.; Huang, Y.; Zhang, T.; Lee, J. W.; Jang, B. W. L.; Mou, C.-Y. New J. Chem. 2014, 38.
doi: 10.1039/c3nj01136d |
95 |
García-Mota, M.; Bridier, B.; Pérez-Ramírez, J.; López, N. J. Catal. 2010, 273, 92.
doi: 10.1016/j.jcat.2010.04.018 |
96 |
Hamm, G.; Schmidt, T.; Breitbach, J.; Franke, D.; Becker, C.; Wandelt, K. Z. Phys. Chem. 2009, 223, 209.
doi: 10.1524/zpch.2009.6033 |
97 |
Hu, M.; Wu, Z.; Yao, Z.; Young, J.; Luo, L.; Du, Y.; Wang, C.; Iqbal, Z.; Wang, X. J. Catal. 2021, 395, 46.
doi: 10.1016/j.jcat.2020.12.009 |
98 |
Huang, F.; Deng, Y.; Chen, Y.; Cai, X.; Peng, M.; Jia, Z.; Ren, P.; Xiao, D.; Wen, X.; Wang, N.; et al. J. Am. Chem. Soc. 2018, 140, 13142.
doi: 10.1021/jacs.8b07476 |
99 |
Huang, X.; Xia, Y.; Cao, Y.; Zheng, X.; Pan, H.; Zhu, J.; Ma, C.; Wang, H.; Li, J.; You, R.; et al. Nano Res. 2017, 10, 1302.
doi: 10.1007/s12274-016-1416-z |
100 |
Liu, Y.; Wang, B.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2021, 60, 22522.
doi: 10.1002/anie.202109538 |
101 |
Zhou, S.; Shang, L.; Zhao, Y.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L.; Zhang, T. Adv. Mater. 2019, 31, e1900509.
doi: 10.1002/adma.201900509 |
102 |
Tew, M. W.; Janousch, M.; Huthwelker, T.; van Bokhoven, J. A. J. Catal. 2011, 283, 45.
doi: 10.1016/j.jcat.2011.06.025 |
103 |
Lin, L.; Yao, S.; Gao, R.; Liang, X.; Yu, Q.; Deng, Y.; Liu, J.; Peng, M.; Jiang, Z.; Li, S.; et al. Nat. Nanotechnol. 2019, 14, 354.
doi: 10.1038/s41565-019-0366-5 |
104 |
Blaser, H.-U.; Steiner, H.; Studer, M. ChemCatChem 2009, 1, 210.
doi: 10.1002/cctc.200900129 |
105 |
Ma, Y.; Ren, Y.; Zhou, Y.; Liu, W.; Baaziz, W.; Ersen, O.; Pham-Huu, C.; Greiner, M.; Chu, W.; Wang, A.; et al. Angew. Chem. Int. Ed. 2020, 59, 21613.
doi: 10.1002/anie.202007707 |
106 |
Liu, Y.; Zhang, W.; Zheng, Y.; Wu, K.; Dong, P.; He, R.; Lu, N.; Mao, J. Dalton Trans. 2021, 50, 7995.
doi: 10.1039/d1dt01227d |
107 |
Tian, S.; Hu, M.; Xu, Q.; Gong, W.; Chen, W.; Yang, J.; Zhu, Y.; Chen, C.; He, J.; Liu, Q.; et al. Sci. China Mater. 2021, 64, 642.
doi: 10.1007/s40843-020-1443-8 |
108 |
Mäki-Arvela, P.; Hájek, J.; Salmi, T.; Murzin, D. Y. Appl. Catal. A-Gen. 2005, 292, 1.
doi: 10.1016/j.apcata.2005.05.045 |
109 |
Lou, Y.; Zheng, Y.; Li, X.; Ta, N.; Xu, J.; Nie, Y.; Cho, K.; Liu, J. J. Am. Chem. Soc. 2019, 141, 19289.
doi: 10.1021/jacs.9b06628 |
110 |
Feng, Y.; Long, S.; Chen, B.; Jia, W.; Xie, S.; Sun, Y.; Tang, X.; Yang, S.; Zeng, X.; Lin, L. ACS Catal. 2021, 11, 6398.
doi: 10.1021/acscatal.1c01386 |
111 |
Gilkey, M. J.; Xu, B. ACS Catal. 2016, 6, 1420.
doi: 10.1021/acscatal.5b02171 |
112 |
Ji, S.; Chen, Y.; Zhang, Z.; Cheong, W.-C.; Liu, Z.; Wang, D.; Li, Y. Nanoscale Horiz. 2019, 4, 902.
doi: 10.1039/c9nh00036d |
113 |
Liu, L.; Corma, A. Chem. Rev. 2018, 118, 4981.
doi: 10.1021/acs.chemrev.7b00776 |
114 |
Jin, J.; Han, X.; Fang, Y.; Zhang, Z.; Li, Y.; Zhang, T.; Han, A.; Liu, J. Adv. Funct. Mater. 2022, 32, 2109218.
doi: 10.1002/adfm.202109218 |
115 |
Li, T.; Liu, F.; Tang, Y.; Li, L.; Miao, S.; Su, Y.; Zhang, J.; Huang, J.; Sun, H.; Haruta, M.; et al. Angew. Chem. Int. Ed. 2018, 57, 7795.
doi: 10.1002/anie.201803272 |
116 |
Lei, L.; Liu, H.; Wu, Z.; Qin, Z.; Wang, G.; Ma, J.; Luo, L.; Fan, W.; Wang, J. ACS Appl. Nano Mater. 2019, 2, 5214.
doi: 10.1021/acsanm.9b01091 |
117 |
Xin, P.; Li, J.; Xiong, Y.; Wu, X.; Dong, J.; Chen, W.; Wang, Y.; Gu, L.; Luo, J.; Rong, H.; et al. Angew. Chem. Int. Ed. 2018, 57, 4642.
doi: 10.1002/anie.201801103 |
118 |
Shang, Q.; Tang, N.; Qi, H.; Chen, S.; Xu, G.; Wu, C.; Pan, X.; Wang, X.; Cong, Y. Chin. J. Catal. 2020, 41, 1812.
doi: 10.1016/s1872-2067(20)63651-8 |
119 |
Shang, Q.; Tang, N.; Qi, H.; Chen, S.; Xu, G.; Wu, C.; Pan, X.; Wang, X.; Cong, Y. J. Am. Chem. Soc. 2018, 140, 8652.
doi: 10.1021/jacs.8b05107 |
120 |
Li, M.; Wu, S.; Yang, X.; Hu, J.; Peng, L.; Bai, L.; Huo, Q.; Guan, J. Appl. Catal. A-Gen. 2017, 543, 61.
doi: 10.1016/j.apcata.2017.06.018 |
121 |
Xie, J.; Yin, K.; Serov, A.; Artyushkova, K.; Pham, H. N.; Sang, X.; Unocic, R. R.; Atanassov, P.; Datye, A. K.; Davis, R. J. ChemSusChem 2017, 10, 359.
doi: 10.1002/cssc.201601364 |
122 |
Chen, Y.; Lin, J.; Wang, X. Chem. Commun. 2021, 58, 208.
doi: 10.1039/d1cc04051k |
123 |
Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science 2003, 301, 935.
doi: 10.1126/science.1085721 |
124 |
Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Science 2014, 346, 1498.
doi: 10.1126/science.1260526 |
125 |
Zhai, Y.; Pierre, D.; Si, R.; Deng, W.; Ferrin, P.; Nilekar, A. U.; Peng, G.; Herron, J. A.; Bell, D. C.; Saltsburg, H.; et al. Science 2010, 329, 1633.
doi: 10.1126/science.1192449 |
126 |
Chen, Y.; Lin, J.; Li, L.; Qjao, B.; Liu, J.; Su, Y.; Wang, X. ACS Catal. 2018, 8, 859.
doi: 10.1021/acscatal.7b02751 |
127 |
Sun, X.; Lin, J.; Zhou, Y.; Li, L.; Su, Y.; Wang, X.; Zhang, T. AIChE J. 2017, 63, 4022.
doi: 10.1002/aic.15759 |
128 |
Li, T.; Chen, F.; Lang, R.; Wang, H.; Su, Y.; Qiao, B.; Wang, A.; Zhang, T. Angew. Chem. Int. Ed. 2020, 59, 7430.
doi: 10.1002/anie.202000998 |
129 |
Guan, H.; Lin, J.; Qiao, B.; Miao, S.; Wang, A.-Q.; Wang, X.; Zhang, T. AIChE J. 2017, 63, 2081.
doi: 10.1002/aic.15585 |
130 |
Li, J.; Sun, L.; Wan, Q.; Lin, J.; Lin, S.; Wang, X. J. Phys. Chem. Lett. 2021, 12, 11415.
doi: 10.1021/acs.jpclett.1c02762 |
131 |
Siyu Yao; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen, B.; et al. Science 2017, 357, 389.
doi: 10.1126/science.aah4321 |
132 |
Dong, J.; Fu, Q.; Jiang, Z.; Mei, B.; Bao, X. J. Am. Chem. Soc. 2018, 140, 13808.
doi: 10.1021/jacs.8b08246 |
133 |
Franke, R.; Selent, D.; Borner, A. Chem. Rev. 2012, 112, 5675.
doi: 10.1021/cr3001803 |
134 |
Hanf, S.; Alvarado Rupflin, L.; Glaeser, R.; Schunk, S. A. Catalysts 2020, 10, 510.
doi: 10.3390/catal10050510 |
135 |
Li, C.; Yan, L.; Lu, L.; Xiong, K.; Wang, W.; Jiang, M.; Liu, J.; Song, X.; Zhan, Z.; Jiang, Z.; et al. Green Chem. 2016, 18, 2995.
doi: 10.1039/c6gc00728g |
136 |
Sun, Q.; Dai, Z.; Liu, X.; Sheng, N.; Deng, F.; Meng, X.; Xiao, F. S. J. Am. Chem. Soc. 2015, 137, 5204.
doi: 10.1021/jacs.5b02122 |
137 |
Zhao, K.; Wang, H.; Wang, X.; Li, T.; Dai, X.; Zhang, L.; Cui, X.; Shi, F. J. Catal. 2021, 401, 321.
doi: 10.1016/j.jcat.2021.08.004 |
138 |
Li, C.; Sun, K.; Wang, W.; Yan, L.; Sun, X.; Wang, Y.; Xiong, K.; Zhan, Z.; Jiang, Z.; Ding, Y. J. Catal. 2017, 353, 123.
doi: 10.1016/j.jcat.2017.07.022 |
139 |
Lang, R.; Li, T.; Matsumura, D.; Miao, S.; Ren, Y.; Cui, Y. -T.; Tan, Y.; Qiao, B.; Li, L.; Wang, A.; et al. Angew. Chem. Int. Ed. 2016, 55, 16054.
doi: 10.1002/anie.201607885 |
140 |
Gao, P.; Liang, G.; Ru, T.; Liu, X.; Qi, H.; Wang, A.; Chen, F.-E. Nat. Commun. 2021, 12, 4698.
doi: 10.1038/s41467-021-25061-0 |
141 |
Wang, L.; Zhang, W.; Wang, S.; Gao, Z.; Luo, Z.; Wang, X.; Zeng, R.; Li, A.; Li, H.; Wang, M.; et al. Nat. Commun. 2016, 7, 14036.
doi: 10.1038/ncomms14036 |
142 |
Wei, B.; Liu, X.; Hua, K.; Deng, Y.; Wang, H.; Sun, Y. ACS Appl. Mater. Interfaces 2021, 13, 15113.
doi: 10.1021/acsami.0c21749 |
143 |
Tang, P.; Paganelli, S.; Carraro, F.; Blanco, M.; Ricco, R.; Marega, C.; Badocco, D.; Pastore, P.; Doonan, C. J.; Agnoli, S. ACS Appl. Mater. Interfaces 2020, 12, 54798.
doi: 10.1021/acsami.0c17073 |
[1] | 朱锐杰, 康磊磊, 李林, 潘晓丽, 王华, 苏杨, 李广亿, 程鸿魁, 李仁贵, 刘晓艳, 王爱琴. WO3-TiO2负载的Pt单原子催化剂光热协同催化丙烷和丙烯氧化[J]. 物理化学学报, 2024, 40(1): 2303003 - . |
[2] | Faizan Muhammad, 赵国琪, 张天旭, 王啸宇, 贺欣, 张立军. 空位有序双钙钛矿A2BX6的弹性和热电性质的第一性原理研究[J]. 物理化学学报, 2024, 40(1): 2303004 - . |
[3] | 宋千伟, 何观朝, 费慧龙. 基于单原子催化剂的光热催化转化:原理和应用[J]. 物理化学学报, 2023, 39(9): 2212038 -0 . |
[4] | 王晶晶, 曹贵强, 段瑞贤, 李向阳, 李喜飞. 金属单原子催化剂增强硫正极动力学的研究进展[J]. 物理化学学报, 2023, 39(5): 2212005 -0 . |
[5] | 唐甜蜜, 王振旅, 管景奇. 调控单位点M-N-C电催化剂的电子结构提升二氧化碳还原性能[J]. 物理化学学报, 2023, 39(4): 2208033 -0 . |
[6] | 刘真, 孟祥福, 古万苗, 查珺, 闫楠, 尤青, 夏楠, 王辉, 伍志鲲. 组合掺杂引入新型、多种镉配位方式增强金纳米团簇的电催化性能[J]. 物理化学学报, 2023, 39(12): 2212064 - . |
[7] | 郑书逸, 吴佳, 王可, 胡梦晨, 文欢, 尹诗斌. 钴掺杂电子调控Ni-Mo-O多孔纳米棒选择性氧化5-羟甲基糠醛耦合制氢[J]. 物理化学学报, 2023, 39(12): 2301032 - . |
[8] | 吴明亮, 章烨晖, 付战照, 吕之阳, 李强, 王金兰. 原子尺度钴基氮碳催化剂对析氧反应的构效关系的研究[J]. 物理化学学报, 2023, 39(1): 2207007 -0 . |
[9] | 马明军, 冯志超, 张小委, 孙超越, 王海青, 周伟家, 刘宏. 基于微生物作为智能模板的电催化剂制备与应用研究进展[J]. 物理化学学报, 2022, 38(6): 2106003 - . |
[10] | 陈宇新, 王丽君, 姚志波, 郝磊端, 谭心怡, Masa Justus, Robertson Alex W., 孙振宇. 单原子配位结构及与载体相互作用的调控用于二氧化碳电催化还原[J]. 物理化学学报, 2022, 38(11): 2207024 -0 . |
[11] | 周君慧, 敖志敏, 安太成. 基于密度泛函理论下H2S在单原子催化剂V/Ti2CO2上的分解机理研究[J]. 物理化学学报, 2021, 37(8): 2007086 - . |
[12] | 陈鹏, 周莹, 董帆. 二维光催化材料电子结构和性能调控策略研究进展[J]. 物理化学学报, 2021, 37(8): 2010010 - . |
[13] | 周雪梅. 二氧化钛负载单原子催化剂用于光催化反应的研究[J]. 物理化学学报, 2021, 37(6): 2008064 - . |
[14] | 李亚文, 那广仁, 罗树林, 贺欣, 张立军. 全无机卤化铅钙钛矿的结构、热力学稳定性和电子性质[J]. 物理化学学报, 2021, 37(4): 2007015 - . |
[15] | 郑堂飞, 蒋金霞, 王健, 胡素芳, 丁炜, 魏子栋. 基于限域特性的电催化剂调控[J]. 物理化学学报, 2021, 37(11): 2011027 - . |
|