物理化学学报 >> 2023, Vol. 39 >> Issue (1): 2206029.doi: 10.3866/PKU.WHXB202206029
李晓慧1,3, 李晓东2, 孙全虎4,5, 何建江4, 杨泽4, 肖金冲1,*(), 黄长水2,4,*()
收稿日期:
2022-06-20
录用日期:
2022-07-22
发布日期:
2022-08-08
通讯作者:
肖金冲,黄长水
E-mail:jcxiaoicas@163.com;huangcs@iccas.ac.cn
基金资助:
Xiaohui Li1,3, Xiaodong Li2, Quanhu Sun4,5, Jianjiang He4, Ze Yang4, Jinchong Xiao1,*(), Changshui Huang2,4,*()
Received:
2022-06-20
Accepted:
2022-07-22
Published:
2022-08-08
Contact:
Jinchong Xiao,Changshui Huang
E-mail:jcxiaoicas@163.com;huangcs@iccas.ac.cn
About author:
Email: huangcs@iccas.ac.cn (C.H.)Supported by:
摘要:
石墨炔是由sp和sp2两种杂化碳构成的新型二维碳同素异形体。基于石墨炔化学合成规律和独特优势,利用其他芳炔前体替代六乙炔基苯,可以获得结构特异、尺寸可控的石墨炔基衍生物,而局域碳骨架的改变可以实现石墨炔衍生物性能调控,包括电导率、带隙、迁移率、空腔尺寸和电荷分离等。这类具有优良半导体性能的石墨炔基衍生物可以广泛应用于电化学储能、电催化、光电转换器件、非线性光学等诸多领域。本文主要综述了近年来石墨炔衍生物的优化设计、结构表征和光电性能,并对其代表性应用进行了总结和展望。
李晓慧, 李晓东, 孙全虎, 何建江, 杨泽, 肖金冲, 黄长水. 石墨炔衍生物的合成与应用[J]. 物理化学学报, 2023, 39(1), 2206029. doi: 10.3866/PKU.WHXB202206029
Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives[J]. Acta Phys. -Chim. Sin. 2023, 39(1), 2206029. doi: 10.3866/PKU.WHXB202206029
表1
石墨炔及其衍生物结构、制备方法、应用与性能一览表1, 2, 36, 43, 49-56, 58, 60, 62"
Number | Sample | Precursor | Structure | Preparation | Application | Performance |
1 | GDY | | | Glaser coupling | Energy conversion and storage, optoelectronic devices, catalysis, etc. | LIBs: With a reversible capacity of 552 mAh?g?1 at a current density of 50 mA?g?1 after performing 200 cycles |
2 | TZ-GDY | | | Glaser coupling (copper substrate) | – | – |
3 | Ben-GDY | | | Glaser coupling (copper substrate) | – | – |
4 | TPE-GDY | | | Glaser coupling (copper substrate) | Nonlinear optics (NLO) | Show clear chirality in the ultraviolet band and exhibit a good nonlinear frequency doubling response |
5 | TTF-GDY | | | Glaser coupling (without substrate) | Electrode materials of LIBs | With a reversible capacity of 837.6 mAh?g?1 |
6 | SBFCY-NS | | | Glaser coupling (without substrate) | Electrode materials of LIBs, and SIBs | LIBs: With a capacity of 1050 mAh?g?1 at a current density of 50 mA?g?1; SIBs: With a capacity of 130 mAh?g?1 at a current density of 5 A g?1 after 3000 circles |
7 | BBT-GDY | | | Glaser-Hay coupling (copper substrate) | – | Show semiconductor characteristics with a bandgap of 2.38 eV, and conductivity of 2 × 10?3 S·m?1 (r.t.) |
8 | CoPor-GDY | | | Glaser-Hay coupling (copper substrate) | – | The overpotential of HER was 308 mV at 10 mA?cm?2 and the Tafel slope was 68 mV?dec?1; the overpotential of OER was 400 mV at 10 mA?cm?2 and the Tafel slope was 129 mV?dec?1. |
9 | PQ-GDY | | | Glaser-Hay coupling (copper substrate) | Electrode materials of LIBs | With a reversible capacity of 570.0 mAh?g?1 after performing 800 cycles at a current density of 200 mA?g?1 |
10 | TP-GDY | | | Glaser-Hay coupling (without substrate) | – | After modification: freestanding morphology, smooth texture, domain size > 1 mm, thickness 220 nm |
11 | COP-GY | | | Sonogashira coupling (melamine sponge or cotton fabric substrate, etc.) | Conductive and superhydrophobic materials for oil-water separation, biosensing, etc. | Cotton fabrics with COP-GY showed oil-water separation efficiency of 95.5%; COP-GY in melamine sponge showed superhydrophobicity with a contact angle of 154°. |
12 | Ag-TET | | | Glaser coupling (Ag substrate) | – | – |
13 | HgL1 | | | Glaser coupling (glass slide, silicon wafer or quartz substrate) | Passively Q-switched (PQS) | With stable and perfect broadband nonlinear saturable absorption (SA) properties at both 532 and 1064 nm |
14 | HgL2 | | | Glaser coupling (glass slide, silicon wafer or quartz substrate) | Passively Q-switched (PQS) | With stable and perfect broadband nonlinear saturable absorption (SA) properties at both 532 and 1064 nm |
1 | HuangC. S.;LiY. L.Acta Phys. -Chim. Sin.2016,32,1314. |
黄长水;李玉良.物理化学学报,2016,32,1314.
doi: 10.3866/PKU.WHXB201605035 |
|
2 |
LiG. X.;LiY. L.;LiuH. B.;GuoY. B.;LiY. J.;ZhuD. B.Chem. Commun2010,46,3256.
doi: 10.1039/b922733d |
3 |
HuangC. S.;LiY. J.;WangN.;XueY. R.;ZuoZ. C.;LiuH. B.;LiY. L.Chem. Rev.2018,118,7744.
doi: 10.1021/acs.chemrev.8b00288 |
4 | ShenX. Y.;HeJ. J.;WangN.;HuangC. S.Acta Phys. -Chim. Sin.2018,34,1029. |
神祥艳;何建江;王宁;黄长水.物理化学学报,2018,34,1029.
doi: 10.3866/PKU.WHXB201801122 |
|
5 |
LiY. J.;XuL.;LiuH. B.;LiY. L.Chem. Soc. Rev.2014,43,2572.
doi: 10.1039/C3CS60388A |
6 |
DiederichF.;KivalaM.Adv. Mater.2010,22,803.
doi: 10.1002/adma.200902623 |
7 |
JiaZ. Y.;LiY. J.;ZuoZ. C.;LiuH. B.;HuangC. S.;LiY. L.Acc. Chem. Res.2017,50,2470.
doi: 10.1021/acs.accounts.7b00205 |
8 |
GaoX.;LiuH. B.;WangD.;ZhangJ.Chem. Soc. Rev.2019,48,908.
doi: 10.1039/C8CS00773J |
9 |
ZuoZ. C.;LiY. L.Joule2019,3,899.
doi: 10.1016/j.joule.2019.01.016 |
10 |
DuY. C.;ZhouW. D.;GaoJ.;PanX. Y.;LiY. L.Acc. Chem. Res.2020,53,459.
doi: 10.1021/acs.accounts.9b00558 |
11 |
YuH. D.;XueY. R.;LiY. L.Adv. Mater.2019,31,1803101.
doi: 10.1002/adma.201803101 |
12 |
SakamotoR.;FukuiN.;MaedaH.;MatsuokaR.;ToyodaR.;NishiharaH.Adv. Mater.2019,31,1804211.
doi: 10.1002/adma.201804211 |
13 |
WangN.;HeJ. J.;WangK.;ZhaoY. J.;JiuT. G.;HuangC. S.;LiY. L.Adv. Mater.2019,31,1803202.
doi: 10.1002/adma.201803202 |
14 |
GuoJ.;GuoM. Y.;WangF. H.;JinW. Y.;ChenC. Y.;LiuH. B.;LiY. L.Angew. Chem. Int. Ed.2020,59,16712.
doi: 10.1002/anie.202006891 |
15 |
JinJ.;GuoM. Y.;LiuJ. M.;LiuJ.;ZhouH. G.;LiJ. Y.;WangL. M.;LiuH. B.;LiY. L.;ZhaoY. L.;et alACS Appl. Mater. Interfaces2018,10,8436.
doi: 10.1021/acsami.7b17219 |
16 |
XieJ. N.;WangN.;DongX. H.;WangC. Y.;DuZ.;MeiL. Q.;YongY.;HuangC. S.;LiY. L.;GuZ. J.;et alACS Appl. Mater. Interfaces2018,11,2579.
doi: 10.1021/acsami.8b00949 |
17 |
ShangH.;ZuoZ. Q.;LiL.;WangF.;LiuH. B.;LiY. J.;LiY. L.Angew. Chem. Int. Ed.2018,57,774.
doi: 10.1002/anie.201711366 |
18 |
WangF.;ZuoZ. C.;LiL.;HeF.;LuF. S.;LiY. L.Adv. Mater.2019,31,1806272.
doi: 10.1002/adma.201806272 |
19 |
ZuoZ. C.;HeF.;WangF.;LiL.;LiY. L.Adv. Mater.2020,32,2004379.
doi: 10.1002/adma.202004379 |
20 |
LiJ.;GaoX.;LiuB.;FengQ. L.;LiX. B.;HuangM. Y.;LiuZ. F.;ZhangJ.;TungC. H.;WuL. Z.J. Am. Chem. Soc.2016,138,3954.
doi: 10.1021/jacs.5b12758 |
21 |
GaoX.;LiJ.;DuR.;ZhouJ. Y.;HuangM. Y.;LiuR.;LiJ.;XieZ. Q.;WuL. Z.;LiuZ. F.;ZhangJ.Adv. Mater.2017,29,1605308.
doi: 10.1002/adma.201605308 |
22 |
FangY.;XueY. R.;LiY. J.;YuH. D.;HuiL.;LiuY. X.;XingC. Y.;ZhangC.;ZhangD. Y.;WangZ. Q.;et alAngew. Chem. Int. Ed.2020,59,13021.
doi: 10.1002/anie.202004213 |
23 |
FangY.;XueY. R.;HuiL.;YuH. D.;LiY. L.Angew. Chem. Int. Ed.2021,133,3207.
doi: 10.1002/ange.202012357 |
24 |
YuH. D.;XueY. R.;HuiL.;ZhangC.;FangY.;LiuY. X.;ChenX.;ZhangD. Y.;HuangB. L.;LiY. L.Natl. Sci. Rev.2021,8,nwaa213.
doi: 10.1093/nsr/nwaa213 |
25 |
ZuoZ. C.;WangD.;ZhangJ.;LuF. S.;LiY. L.Adv. Mater.2019,31,1803762.
doi: 10.1002/adma.201803762 |
26 |
XueY. R.;HuangB. L.;YiY. P.;GuoY.;ZuoZ. C.;LiY. J.;JiaZ. Y.;LiuH. B.;LiY. L.Nat. Commun.2018,9,1460.
doi: 10.1038/s41467-018-03896-4 |
27 |
HuiL.;XueY. R.;YuH. D.;LiuY. X.;FangY.;XingC. Y.;HuangB. L.;LiY. L.J. Am. Chem. Soc.2019,141,10677.
doi: 10.1021/jacs.9b03004 |
28 |
HuiL.;XueY. R.;HuangB. L.;YuH. D.;ZhangC.;ZhangD. Y.;JiaD. Z.;ZhaoY. J.;LiY. J.;LiuH. B.;et alNat. Commun.2018,9,5309.
doi: 10.1038/s41467-018-07790-x |
29 |
YuH. D.;XueY. R.;HuiL.;ZhangC.;LiY. J.;ZuoZ. C.;ZhaoY. J.;LiZ. B.;LiY. L.Adv. Mater.2018,30,1707082.
doi: 10.1002/adma.201707082 |
30 |
YangZ.;CuiW. W.;WangK.;SongY. W.;ZhaoF. H.;WangN.;LongY. Z.;WangH. L.;HuangC. S.Chem. Eur. J.2019,25,5643.
doi: 10.1002/chem.201900477 |
31 |
DuH. P.;ZhangZ. H.;He;J.J.;CuiZ. L.;ChaiJ. C.;MaJ.;YangZ.;HuangC. S.;CuiG. L.Small2017,13,1702277.
doi: 10.1002/smll.201702277 |
32 |
ZhaoY. S.;WanJ. W.;YaoH. Y.;ZhangL. J.;LinK. F.;WangL.;YangN. L.;LiuD. B.;SongL.;ZhuJ.;et alNat. Chem.2018,10,924.
doi: 10.1038/s41557-018-0100-1 |
33 |
ShenX. Y.;LiX. D.;ZhaoF. H.;WangN.;XieC. P.;HeJ. J.;SiW. Y.;YiY. P.;YangZ.;LiX. F.;et al2D Mater.2019,6,035020.
doi: 10.1088/2053-1583/ab185d |
34 |
WangN.;HeJ. J.;TuZ. Y.;YangZ.;ZhaoF. H.;LiX. D.;HuangC. S.;WangK.;JiuT. G.;YiY. P.;et alAngew. Chem. Int. Ed.2017,56,10740.
doi: 10.1002/anie.201704779 |
35 |
HeJ. J.;WangN.;YangZ.;ShenX. Y.;WangK.;HuangC. S.;YiY. P.;TuZ. Y.;LiY. L.Energy Environ. Sci.2018,11,2893.
doi: 10.1039/c8ee01642a |
36 |
ZhouW. X.;ShenH.;WuC. Y.;TuZ. Y.;HeF.;GuY. N.;XueY. R.;ZhaoY. J.;YiY. P.;LiY. J.;et alJ. Am. Chem. Soc2018,141,48.
doi: 10.1021/jacs.8b09945 |
37 |
HeJ. J.;WangN.;CuiZ. L.;DuH. P.;FuL.;HuangC. S.;YangZ.;ShenX. Y.;YiY. P.;TuZ. Y.;et alNat. Commun.2017,8,1.
doi: 10.1038/s41467-017-01202-2 |
38 |
YangZ.;LiuR. R.;WangN.;HeJ. J.;WangK.;LiX. D.;ShenX. Y.;WangX.;LvQ.;ZhangM. J.;et alCarbon2018,137,442.
doi: 10.1016/j.carbon.2018.05.049 |
39 |
ShangH.;ZuoZ. C.;ZhengH. Y.;LiK.;TuZ. Y.;YiY. P.;LiuH. B.;LiY. J.;LiY. L.Nano Energy2018,44,144.
doi: 10.1016/j.nanoen.2017.11.072 |
40 |
KanX. N.;BanY. Q.;WuC. Y.;PanQ. Y.;LiuH.;SongJ. H.;ZuoZ. C.;LiZ. B.;ZhaoY. J.ACS Appl. Mater. Interfaces2018,10,53.
doi: 10.1021/acsami.7b17326 |
41 |
YangZ.;ShenX. Y.;WangN.;HeJ. J.;LiX. D.;WangX.;HouZ. F.;WangK.;GaoJ.;JiuT. G.;et alACS Appl. Mater. Interface2019,11,2608.
doi: 10.1021/acsami.8b01823 |
42 |
ZhangZ. H.;WuC. Y.;PanQ. Y.;ShaoF.;SongQ. Z.;ChenS. Q.;LiZ. B.;ZhaoY. J.Chem. Commun.2020,56,3210.
doi: 10.1039/C9CC09617E |
43 |
PanQ. Y.;ChenX. S.;LiH.;ChenS. Q.;ZhengX. H.;LiuH.;LiB.;ZhaoY. J.2D Mater.2022,9,014001.
doi: 10.1088/2053-1583/ac2e50 |
44 |
ZhaoZ. Q.;DasS.;XingG. L.;FayonP.;HeasmanP.;JayM.;BaileyS.;LambertC.;YamadaH.;WakiharaT.;et alAngew. Chem. Int. Ed.2018,57,11952.
doi: 10.1002/anie.201805924 |
45 |
YangZ.;SongY. W.;ZhangC. F.;HeJ. J.;LiX. D.;WangX.;WangN.;LiY. L.;HuangC. S.Adv. Energy Mater.2021,11,2101197.
doi: 10.1002/aenm.202101197 |
46 |
YangZ.;RenX.;SongY. W.;LiX. D.;ZhangC. F.;HuX. L.;HeJ. J.;LiJ. Z.;HuangC. S.Energy Environ. Mater.2022,
doi: 10.1002/eem2.12269 |
47 |
WangN.;LiX. D.;TuZ. Y.;ZhaoF. H.;HeJ. J.;GuanZ. Y.;HuangC. S.;LiY. P.;LiY. L.Angew. Chem. Int. Ed.2018,130,4032.
doi: 10.1002/anie.201800453 |
48 |
JiaZ. Y.;ZuoZ. C.;YiY. P.;LiuH. B.;LiD.;LiY. J.;LiY. L.Nano Energy2017,33,343.
doi: 10.1016/j.nanoen.2017.01.049 |
49 |
LiuH.;ZhangZ. H.;WuC. Y.;PanQ. Y.;ZhaoY. J.;LiZ. B.Small2019,15,1804519.
doi: 10.1002/smll.201804519 |
50 |
LiuC.;ChengP. X.;ShiR. C.;GeF.;HanX.;QiS. M.;LiG.;XuJ. L.2D Mater.2021,9,014006.
doi: 10.1088/2053-1583/ac3c9a |
51 |
PanQ. Y.;ChenS. Q.;WuC. Y.;ZhangZ. H.;LiZ. B.;ZhaoY. J.ACS Appl. Mater. Interfaces2019,11,46070.
doi: 10.1021/acsami.9b15133 |
52 |
LuT. T.;DengX.;SunQ. H.;XiaoJ. C.;HeJ. J.;WangK.;HuangC. S.Small2021,18,2106328.
doi: 10.1002/smll.202106328 |
53 |
GaoL.;GeX.;ZuoZ. C.;WangF.;LiuX. Y.;LvM. M.;ShiS. Q.;XuL. T.;LiuT. F.;ZhouQ. H.;et alNano Lett.2020,20,7333.
doi: 10.1021/acs.nanolett.0c02728 |
54 |
PanQ. Y.;ChenX. S.;LiuH.;GanW. J.;DingN. X.;ZhaoY. J.Mat. Chem. Front.2021,5,4596.
doi: 10.1039/d1qm00285f |
55 |
MatsuokaR.;ToyodaR.;ShiotsukiR.;FukuiN.;WadaK.;MaedaH.;SakamotoR.;SasakiS.;MasunagaH.;NagashioK.;et alACS Appl. Mater. Interfaces2018,11,2730.
doi: 10.1021/acsami.8b00743 |
56 |
KulkarniR.;HuangJ. Y.;TrunkM.;BurmeisterD.;AmsalemP.;MüllerJ.;MartinA.;KochN.;KassD.;BojdysM. J.Chem. Sci2021,12,12661.
doi: 10.1039/d1sc03390e |
57 |
Al-BusaidiI. J.;HaqueA.;Al-BalushiR. A.;RatherJ. A.;MunamA.;IlmiR.;RaithbyP. R.;ZhangY. M.;FuY. Y.;XieZ. Y.;et alNew J. Chem.2021,45,15082.
doi: 10.1039/D1NJ00925G |
58 |
XuL. L.;SunJ. B.;TangT. H.;ZhangH. Y.;SunM. Z.;ZhangJ. Q.;LiJ. H.;HuangB. L.;WangZ. P.;XieZ.;et alAngew. Chem. Int. Ed.2021,60,11326.
doi: 10.1002/anie.202014835 |
59 |
SunQ.;CaiL. L.;MaH. H.;YuanC. X.;XuW.ACS Nano2016,10,7023.
doi: 10.1021/acsnano.6b03048 |
60 |
YangZ. C.;GebhardtJ. L.;SchaubT. A.;SanderT.;SchönamsgruberJ.;SoniH.;GörlingA.;KivalaM.;MaierS.Nanoscale2018,10,3769.
doi: 10.1039/c7nr08238j |
61 |
ZhangY. Q.;PaintnerT.;HellwigR.;HaagF.;AllegrettiF.;FeulnerP.;KlyatskayaS.;RubenM.;SeitsonenA. P.;BarthJ. V.;et alJ. Am. Chem. Soc.2019,141,5087.
doi: 10.1021/jacs.8b13547 |
62 |
AryaJ. S.;MahatoM. K.;SankaramanS.;PrasadE.J. Mater. Chem. C2021,9,10324.
doi: 10.1039/D1TC02334A |
63 |
KongY.;LiJ. Q.;ZengS.;YonC.;TongL. M.;ZhangJ.Chem2020,6,1933.
doi: 10.1016/j.chempr.2020.06.011 |
64 | TangJ. Y.;JiangH. F.;DengG. H.;ZhouL.Chin. J. Org. Chem.2005,25,1503. |
唐金玉;汪焕峰;邓国华;周磊.有机化学,2005,25,1503. | |
65 | BaiD. H.;LiC. J.;LiJ.;JiaX. S.Chin. J. Org. Chem.2012,32,994. |
白东虎;李春举;李健;贾学顺.有机化学,2012,32,994.
doi: 10.6023/cjoc1202073 |
|
66 |
ZhouJ. Y.;LiJ. Q.;LiuZ. F.;ZhangJ.Adv. Mater.2019,31,1803758.
doi: 10.1002/adma.201803758 |
67 |
DiederichF.;RubinY.Angew. Chem. Int. Ed.1992,31,1101.
doi: 10.1002/anie.199211013 |
68 |
LiG. X.;LiY. L.;QianX. M.;LiuH. B.;LinH. W.;ChenN.;LiY. J.J. Phys. Chem. C2011,115,2611.
doi: 10.1021/jp107996f |
69 |
MatsuokaR.;SakamotoR.;HoshikoK.;SasakiS.;MasunagaH.;NagashioK.;NishiharaH.J. Am. Chem. Soc.2017,139,3145.
doi: 10.1021/jacs.6b12776 |
70 |
LiuR.;GaoX.;ZhouJ. Y.;XuH.;LiZ. Z.;ZhangS. Q.;XieZ. Q.;ZhangJ.;LiuZ. F.Adv. Mater.2017,29,1604665.
doi: 10.1002/adma.201604665 |
71 | ZhouJ. Y.;ZhangJ.;LiuZ. F.Acta Phys. -Chim. Sin.2018,34,977. |
周劲媛;张锦;刘忠范.物理化学学报,2018,34,977.
doi: 10.3866/PKU.WHXB201801243 |
|
72 |
KlappenbergerF.;ZhangY. Q.;BjörkJ.;KlyatskayaS.;RubenM.;BarthJ. V.Acc. Chem. Res.2015,48,2140.
doi: 10.1021/acs.accounts.5b00174 |
73 |
GaoH. Y.;HeldP. A.;AmirjalayerS.;LiuL. C.;TimmerA.;SchirmerB.;AradoO. D.;MönigH.;Mück-LichtenfeldC.;NeugebauerJ.;et alJ. Am. Chem. Soc.2017,139,7012.
doi: 10.1021/jacs.7b02430 |
74 |
GaoX.;ZhuY. H.;YiD.;ZhouJ. Y.;ZhangS. S.;YinC.;DingF.;ZhangS. Q.;YiX. H.;WangJ. Z.;et alSci. Adv.2018,4,eaat6378.
doi: 10.1126/sciadv.aat6378 |
75 |
MiaoS. B.;SmithM. D.;BunzU. H. F.Org. Lett.2006,8,757.
doi: 10.1021/ol0529851 |
76 | ZhangS. D.;LiuY.;QiM. Y.;CaoA. M.Acta Phys. -Chim. Sin.2021,37,2011007. |
张思东;刘园;祁慕尧;曹安民.物理化学学报,2021,37,2011007.
doi: 10.3866/PKU.WHXB202011007 |
|
77 |
MortazaviB.;ShahrokhiM.;MadjetM. E.;HussainT.;ZhuangX. Y.;RabczukT.J. Mater. Chem. C2019,7,3025.
doi: 10.1039/C9TC00082H |
78 |
GeyerF. L.;RomingerF.;BunzU. H. F.Chem. Eur. J.2014,20,3600.
doi: 10.1002/chem.201400105 |
79 | LiuM. H.;LiY. L.Acta Phys. -Chim. Sin.2018,34,959. |
刘鸣华;李玉良.物理化学学报,2018,34,959.
doi: 10.3866/PKU.WHXB201803232 |
|
80 | QueH. F.;JiangH. N.;WangX. G.;ZhaiP. B.;MengL. J.;ZhangP.;GongY. J.Acta Phys. -Chim. Sin.2021,37,2010051. |
阙海峰;江华宁;王兴国;翟朋博;孟令佳;张鹏;宫勇吉.物理化学学报,2021,37,2010051.
doi: 10.3866/PKU.WHXB202010051 |
|
81 | YeY. K.;HuZ. X.;LiuJ. H.;LinW. C.;ChenT. W.;ZhengJ. X.;PanF.Acta Phys. -Chim. Sin.2021,37,2011003. |
叶耀坤;胡宗祥;刘佳华;林伟成;陈涛文;郑家新;潘锋.物理化学学报,2021,37,2011003.
doi: 10.3866/PKU.WHXB202011003 |
|
82 |
van MiertG.;JuričićV.;Morais;SmithC.Phys. Rev. B2014,90,195414.
doi: 10.1103/PhysRevB.90.195414 |
83 |
SearlesD. J.;SunC. H.J. Phys. Chem. C2012,116,26222.
doi: 10.1021/jp309638z |
84 | Wang, S. L.; Yang, G. Y.; Nasir, M. S.; Wang, X.; Wang, X. J.; Wang, J. N.; Yan, W. Acta Phys. -Chim. Sin. 2021, 37, 2001003. |
王思岚, 杨国锐, Nasir, M. S., 王筱珺, 王嘉楠, 延卫. 物理化学学报, 2021, 37, 2001003. doi: 10.3866/PKU.WHXB202001003 | |
85 | ChenY.;DongH. Y.;LiY. Y.;LiuJ. P.Acta Phys. -Chim. Sin.2021,37,2007075. |
陈瑶;董浩洋;李园园;刘金平.物理化学学报,2021,37,2007075.
doi: 10.3866/PKU.WHXB202007075 |
|
86 |
WuB.;LiM. R.;XiaoS. N.;QuY. K.;QiuX. Y.;LiuT. F.;TianF. H.;LiH. X.;XiaoS. X.Nanoscale2017,9,11939.
doi: 10.1039/c7nr02247f |
87 | Li, Y. L. Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics, 1st ed.; Wiley: Weinheim, Germany, 2021; pp. 367–368. |
[1] | 徐涵煜, 宋雪旦, 张青, 于畅, 邱介山. 理论研究Cu@C2N催化剂表面上水分子对电催化CO2还原反应机理的影响[J]. 物理化学学报, 2024, 40(1): 2303040 - . |
[2] | 王鹤然, 陈凯, 伏硕, 王晧暄, 袁加轩, 胡星奕, 许文娟, 密保秀. 三种同分异构的双苯并吩噻嗪材料的合成、理论计算及光物理性质[J]. 物理化学学报, 2024, 40(1): 2303047 - . |
[3] | 段欣漩, Sendeku Marshet Getaye, 张道明, 周道金, 徐立军, 高学庆, 陈爱兵, 邝允, 孙晓明. 钨掺杂镍铁水滑石高效电催化析氧反应[J]. 物理化学学报, 2024, 40(1): 2303055 - . |
[4] | 王宁, 李一, 崔乾, 孙晓玥, 胡悦, 罗运军, 杜然. 金属气凝胶:可控制备与应用展望[J]. 物理化学学报, 2023, 39(9): 2212014 -0 . |
[5] | 夏伟锋, 季成宇, 王锐, 裘式纶, 方千荣. 基于四硫富瓦烯的无金属共价有机框架材料用于高效电催化析氧反应[J]. 物理化学学报, 2023, 39(9): 2212057 -0 . |
[6] | 兰畅, 楚宇逸, 王烁, 刘长鹏, 葛君杰, 邢巍. 质子交换膜燃料电池阴极非贵金属M-Nx/C型氧还原催化剂研究进展[J]. 物理化学学报, 2023, 39(8): 2210036 -0 . |
[7] | 于彦会, 饶鹏, 封苏阳, 陈民, 邓培林, 李静, 苗政培, 康振烨, 沈义俊, 田新龙. 钴原子团簇用于高效氧还原反应[J]. 物理化学学报, 2023, 39(8): 2210039 -0 . |
[8] | 屈卓研, 张笑银, 肖茹, 孙振华, 李峰. 有机硫化合物在锂硫电池中的应用[J]. 物理化学学报, 2023, 39(8): 2301019 -0 . |
[9] | 杨帅, 徐瑜歆, 郝子坤, 秦胜建, 张润鹏, 韩钰, 杜利伟, 朱紫洢, 杜安宁, 陈欣, 吴昊, 乔冰冰, 李坚, 王艺, 孙昺晨, 闫融融, 赵晋津. 高效医学传感钙钛矿材料研究进展[J]. 物理化学学报, 2023, 39(5): 2211025 -0 . |
[10] | 荣佑文, 桑佳琪, 车丽, 高敦峰, 汪国雄. 二氧化碳电催化还原中的电解质效应[J]. 物理化学学报, 2023, 39(5): 2212027 -0 . |
[11] | 王奥琦, 陈军, 张鹏飞, 唐珊, 冯兆池, 姚婷婷, 李灿. NiMo(O)物相结构与电解水析氢反应活性的关联[J]. 物理化学学报, 2023, 39(4): 2301023 -0 . |
[12] | 许义飞, 杨瀚文, 常晓侠, 徐冰君. 电催化动力学简介[J]. 物理化学学报, 2023, 39(4): 2210025 -0 . |
[13] | 胡洋, 刘斌, 徐路遥, 董自强, 仵亚婷, 刘杰, 钟澄, 胡文彬. 基于微流控技术平台的Pt基三元电催化剂高通量合成和筛选[J]. 物理化学学报, 2023, 39(3): 2209004 -0 . |
[14] | 尉瑞芳, 李东峰, 尹恒, 王秀丽, 李灿. 微秒时间分辨的工况电化学紫外可见吸收光谱测量系统[J]. 物理化学学报, 2023, 39(2): 2207035 -0 . |
[15] | 韦天然, 张书胜, 刘倩, 邱园, 罗俊, 刘熙俊. 富氧空位的非晶氧化铜高选择性电催化还原CO2制乙烯[J]. 物理化学学报, 2023, 39(2): 2207026 -0 . |
|