物理化学学报 >> 2009, Vol. 25 >> Issue (11): 2380-2384.doi: 10.3866/PKU.WHXB20091121

研究论文 上一篇    下一篇

Fe/MgO催化合成碳纳米管和氮掺杂碳纳米管

曹永, 矫庆泽, 赵芸   

  1. 北京理工大学化工与环境学院, 北京 100081|华北水利水电学院环境与市政工程学院, 郑州 450011
  • 收稿日期:2009-04-06 修回日期:2009-08-29 发布日期:2009-10-28
  • 通讯作者: 赵芸 E-mail:zhaoyun@bit.edu.cn

Synthesis of N-doped and Undoped Carbon Nanotubes on Fe/MgO Catalysts

CAO Yong, JIAO Qing-Ze, ZHAO Yun   

  1. School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, P. R. China|Institute of Environment and Municipal Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011, P. R. China
  • Received:2009-04-06 Revised:2009-08-29 Published:2009-10-28
  • Contact: ZHAO Yun E-mail:zhaoyun@bit.edu.cn

摘要:

以MgO负载的Fe为催化剂、正己烷为碳源、乙二胺为氮源, 用催化化学气相沉积法合成了碳纳米管(CNTs)和氮掺杂碳纳米管(CNx). 通过还原焙烧的Mg/Fe水滑石(LDH)和Mg(NO3)2/Fe(NO3)3前驱体得到具有催化活性的Fe催化剂(Fe-LDH和Fe-Mg(NO3)2/Fe(NO3)3). 由这两种催化剂催化合成的CNTs都具有中空的管状结构. Fe-LDH催化合成的CNx具有明显的“竹节”状形貌, 而Fe-Mg(NO3)2/Fe(NO3)3催化合成的部分CNx的形貌与“竹节”状不同. 该CNx具有厚的管壁且在管壁的石墨层与层之间存在大量的空隙. Fe-LDH催化合成的CNx中氮摩尔分数为6.3%, 高于Fe-Mg(NO3)2/Fe(NO3)3催化合成CNx中的5.7%; 但后者具有更多的缺陷, 石墨化程度更加无序.

关键词: 碳纳米管, 氮掺杂碳纳米管, 水滑石, 催化剂, 前体, 化学气相沉积

Abstract:

N-doped and undoped carbon nanotubes (CNx and CNTs) were synthesized by the catalytic chemical vapor deposition of ethylenediamine and hexane on Fe/MgO catalysts. The Fe catalysts were obtained by calcination ofa Mg/Fe layered double hydroxide (LDH) and a mixture of Mg(NO3)2/Fe(NO3)3 precursors followed by reduction (Fe-LDH and Fe-Mg(NO3)2/Fe(NO3)3). The CNTs grown on both catalysts had tubular structures with hollow cores while some of the CNx grown on Fe-Mg(NO3)2/Fe(NO3)3 had a different morphology from the conventional bamboo-shape of those grown on Fe-LDH. This special morphology with thick walls had some space between the graphite layers. The molar content of N in the CNx grown on Fe-LDH was 6.3%, which was a little more than 5.7%found in the CNx grown on Fe-Mg(NO3)2/Fe(NO3)3. However, the latter has more defects and disorders.

Key words: Carbon nanotube, N-doped carbon nanotube, Layered double hydroxide, Catalyst, Precursor, Chemical vapor deposition