物理化学学报 >> 2021, Vol. 37 >> Issue (5): 2008043.doi: 10.3866/PKU.WHXB202008043

所属专题: CO2还原

综述 上一篇    下一篇

基于CdS和CdSe纳米半导体材料的可见光催化二氧化碳还原研究进展

吴进, 刘京, 夏雾, 任颖异, 王锋()   

  • 收稿日期:2020-08-16 录用日期:2020-09-07 发布日期:2020-09-10
  • 通讯作者: 王锋 E-mail:wangfengchem@hust.edu.cn
  • 作者简介:王锋,理学博士,华中科技大学化学与化工学院副教授、博士生导师。2005年毕业于华中科技大学化学系应用化学专业,获理学学士学位。2008.09-2013.06年于中国科学院理化技术研究所攻读有机化学专业博士学位,获理学博士学位。2013.10-2016.10年在香港大学化学系从事博士后研究。2016年10月入职华中科技大学。长期致力于太阳能光化学转换和超分子光化学研究,目前主要研究方向是人工光合作用中的光催化制氢和二氧化碳还原。目前担任《物理化学学报》青年编委第一联系人:

    These authors contributed equally to this article.

  • 基金资助:
    国家自然科学基金(21871102);中央高校基本科研业务费专项资金(2019kfyRCPY101)

Advances on Photocatalytic CO2 Reduction Based on CdS and CdSe Nano-Semiconductors

Jin Wu, Jing Liu, Wu Xia, Ying-Yi Ren, Feng Wang()   

  • Received:2020-08-16 Accepted:2020-09-07 Published:2020-09-10
  • Contact: Feng Wang E-mail:wangfengchem@hust.edu.cn
  • About author:Feng Wang. Email: wangfengchem@hust.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(21871102);the Fundamental Research Funds for the Central Universities, China(2019kfyRCPY101)

摘要:

二氧化碳(CO2)是大气层中温室气体的主要成分,资源化利用二氧化碳既可以减少二氧化碳排放又可以利用二氧化碳制备高附加值化学品。通过人工光合作用系统将二氧化碳还原为一氧化碳、甲烷等太阳燃料被认为是二氧化碳资源化利用的理想方式。纳米半导体材料因其丰富的光物理和光化学特性以及优异的光稳定性被作为光敏剂或光催化剂用于构筑光催化二氧化碳还原体系,其中CdS和CdSe(如溶胶量子点、纳米棒、纳米片)是研究较多的两种纳米半导体材料。基于CdS或CdSe纳米半导体材料的光催化二氧化碳还原体系可分为三类:(i)基于CdS、CdSe的光催化二氧化碳还原体系;(ii)基于CdS、CdSe复合材料的二氧化碳还原体系;(iii) CdS和分子催化剂构筑的杂化二氧化碳还原体系。本文介绍了人工光合作用体系的构筑以及半导体纳米材料光催化机理,总结了上述三类体系中的代表性工作,最后讨论了基于纳米半导体材料的光催化二氧化碳还原研究前景和面临的挑战。

关键词: 人工光合作用, CO2还原, CdS纳米半导体, CdSe量子点, 分子催化剂

Abstract:

Carbon dioxide (CO2) is one of the main greenhouse gases in the atmosphere. The conversion of CO2 into solar fuels (CO, HCOOH, CH4, CH3OH, etc.) using artificial photosynthetic systems is an ideal way to utilize CO2 as a resource and reduce CO2 emissions. A typical artificial photosynthetic system is composed of three key components: a photosensitizer (PS) to harvest visible light, a catalyst (C) to catalyze CO2 or protons into carbon-based fuels or H2, respectively, and a sacrificial electron donor (SED) to consume the holes generated in the PS. In most cases, the PS and catalyst are two different components of a system. However, some components that possess both light harvesting and redox catalysis functionalities, e.g., nano-semiconductors, are referred to as photocatalysts. During photocatalysis, the PS is typically excited by photons to generate excited electrons. The excited electrons in the PS are transferred to the catalyst to generate a reduced catalyst. The reduced catalyst is used as an active intermediate to perform CO2 binding and transformation. The PS can be recovered through a reaction with the SED. Nano-semiconductors have been used as photosensitizers and/or photocatalysts in photocatalytic CO2 reduction systems owing to their excellent photophysical and photochemical properties and photostability. CdS and CdSe nano-semiconductors, such as quantum dots, nanorods, and nanosheets, have been widely used in the construction of photocatalytic CO2 reduction systems. Systems based on CdS or CdSe nano-semiconductors can be classified into three categories. The first category is systems based on CdS or CdSe photocatalysts. In these systems, CdS or CdSe nano-semiconductors function as photocatalysts to catalyze CO2 reduction without a co-catalyst under visible-light irradiation. The CO2 reduction reaction occurs at the surface of the CdS or CdSe nano-semiconductors. The second category is systems based on CdS or CdSe composite photocatalysts. CdS or CdSe nano-semiconductors are combined with functional materials, such as reduced graphene oxide or TiO2, to prepare composite photocatalysts. These composite photocatalysts are expected to improve the lifetime of the charge separation state and inhibit the photocorrosion of the nano-semiconductors during photocatalysis. The third category is hybrid systems containing a CdS nano-semiconductor and molecular catalysts, such as nickel and cobalt complexes and iron porphyrin. In these hybrid systems, CdS functions as a photosensitizer and the CO2 reduction reaction occurs at the molecular catalyst. This review article introduces the construction of artificial photosynthetic systems and the photocatalytic mechanism of nano-semiconductors, and summarizes the representative works in the three aforementioned categories of systems. Finally, the challenges of nano-semiconductors for photocatalytic CO2 reduction are discussed.

Key words: Artificial photosynthesis, CO2 reduction, CdS nano-semiconductor, CdSe quantum dots, Molecular catalyst