Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (9): 913-922.doi: 10.3866/PKU.WHXB201809036
Special Issue: C–H Activation
• Review • Previous Articles Next Articles
Yuanyuan HU1,2,Congyang WANG1,2,*()
Received:
2018-09-21
Accepted:
2018-10-25
Published:
2018-10-29
Contact:
Congyang WANG
E-mail:wangcy@iccas.ac.cn
About author:
WANG Congyang obtained his B.S. degree from Nanjing University in 2000 and his Ph.D. degree from Peking University under the guidance of Prof. Zhenfeng Xi in 2005. After a postdoctoral stay in the same group, he moved to the University of Münster, Germany, working with Prof. Frank Glorius as an Alexander von Humboldt Research Fellow. In 2010, he started his independent research career at Institute of Chemistry, Chinese Academy of Sciences as a professor. In 2015, he became a joint professor at the University of Chinese Academy of Sciences (UCAS). Currently, his research interest focuses on manganese-group-metal catalysis
Supported by:
Yuanyuan HU,Congyang WANG. Bimetallic C―H Activation in Homogeneous Catalysis[J]. Acta Physico-Chimica Sinica 2019, 35(9), 913-922. doi: 10.3866/PKU.WHXB201809036
1 | Yu J. Q. ; Shi Z.-J C―H Activation Springer: Berlin, Germany,, 2010. |
2 |
Li C.-J. Acc. Chem. Res 2009, 42, 335.
doi: 10.1021/ar800164n |
3 |
Sun C. -L. ; Li B. -J. ; Shi Z. -J. Chem. Rev 2011, 111, 1293.
doi: 10.1021/cr100198w |
4 |
Arockiam P. B. ; Bruneau C. ; Dixneuf P. H. Chem. Rev. 2012.
doi: 10.1021/cr300153j |
5 |
Wencel-Delord J. ; Glorius F. Nat. Chem 2013, 5, 369.
doi: 10.1038/nchem.1607 |
6 |
Song G. ; Li X. Acc. Chem. Res 2015, 48, 1007.
doi: 10.1021/acs.accounts.5b00077 |
7 |
Moselage M. ; Li J. ; Ackermann L. ACS Catal 2016, 6, 498.
doi: 10.1021/acscatal.5b02344 |
8 |
He J. ; Wasa M. ; Chan K. S. L. ; Shao Q. ; Yu J.-Q. Chem. Rev 2017, 117, 8754.
doi: 10.1021/acs.chemrev.6b00622 |
9 |
Hummel J. R. ; Boerth J. A. ; Ellman J. A. Chem. Rev 2017, 117, 9163.
doi: 10.1021/acs.chemrev.6b00661 |
10 |
Shang R. ; Ilies L. ; Nakamura E. Chem. Rev. 2017, 117.
doi: 10.1021/acs.chemrev.6b00772 |
11 |
Hu Y. ; Zhou B. ; Wang C. Acc. Chem. Res 2018, 51, 816.
doi: 10.1021/acs.accounts.8b00028 |
12 | de Meijere A. ; Diederich F. Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2004. |
13 |
Sinfelt J. H. Acc. Chem. Res. 1977, 10, 15.
doi: 10.1021/ar50109a003 |
14 | Sinfelt J. H. Bimetallic Catalysis: Discoveries, Concepts and Applications; John Wiley and Sons: New York, USA, 1983. |
15 |
Shibasaki M. ; Yamamoto Y. Multimetallic Catalysts in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2004.
doi: 10.1126/science.1135941 |
16 |
Stamenkovic V. R. ; Fowler B. ; Mun B. S. ; Wang G. F. ; Ross P. N. ; Lucas C. A. ; Markovic N. M. Science, 2007, 315, 493.
doi: 10.1039/b608694m |
17 |
Wang C. ; Xi Z. Chem. Soc. Rev 2007, 36, 1395.
doi: 10.1021/cr500208k |
18 |
Buchwalter P. ; Rosé J. ; Braunstein P. Chem. Rev 2015, 115, 28.
doi: 10.1039/c6sc05556g |
20 |
Mankad N. P. Chem. Commun 2018, 54, 1291.
doi: 10.1039/c7cc09675e |
21 |
Davies H. M. L. ; Beckwith R. E. J. Chem. Rev. , 2003, 103, 2861.
doi: 10.1021/cr0200217 |
22 |
Du Bois J. Org. Process Res. Dev. , 2011, 15, 758.
doi: 10.1021/op200046v |
23 |
Kornecki K. P. ; Briones J. F. ; Boyarshikh V. ; Fullilove F. ; Autschbach J. ; Schrote K. E. ; Lancaster K. M. ; Davies H. M. ; Berry J. F. Science, 2013, 342, 351.
doi: 10.1126/science.1243200 |
24 |
Davies H. M. L. ; Morton D. ACS Cent. Sci 2017, 3, 936.
doi: 10.1021/acscentsci.7b00329 |
25 |
Lyons T. W. ; Sanford M. S. Chem. Rev 2010, 110, 1147.
doi: 10.1021/cr900184e |
26 |
Lane B. S. ; Brown M. A. ; Sames D. J. Am. Chem. Soc 2005, 127, 8050.
doi: 10.1021/ja043273t |
27 |
Ricci P. ; Kr mer K. ; Cambeiro X. C. ; Larrosa I. J. Am. Chem. Soc 2013, 135, 13258.
doi: 10.1021/ja405936s |
28 |
Yeung C. S. ; Dong V. M. Chem. Rev 2011, 111, 1215.
doi: 10.1021/cr100280d |
29 |
Ricci P. ; Krämer K. ; Larrosa I. J. Am. Chem. Soc 2014, 136, 18082.
doi: 10.1021/ja510260j |
30 |
Whitaker D. ; Batuecas M. ; Ricci P. ; Larrosa I. Chem. Eur. J 2017, 23, 12763.
doi: 10.1002/chem.201703527 |
31 |
Huang G. -H. ; Li J.-M. ; Huang J. -J. ; Lin J. -D. ; Chuang G. J. Chem. Eur. J. 2014, 20, 5240.
doi: 10.1002/chem.201304633 |
32 |
Martin T. ; Verrier C. ; Hoarau C. ; Marsais F. Org. Lett 2008, 10, 2909.
doi: 10.1021/ol801035c |
33 |
Joo J. M. ; Touré B. B. ; Sames D. J. Org. Chem 2010, 75, 4911.
doi: 10.1021/jo100727j |
34 |
Strotman N. A. ; Chobanian H. R. ; Guo Y. ; He J. ; Wilson J. E. Org. Lett 2010, 12, 3578.
doi: 10.1021/ol1011778 |
35 |
Théveau L. ; Verrier C. ; Lassalas P. ; Martin T. ; Dupas G. ; Querolle O. ; Hijfte L. V. ; Marsais F. ; Hoarau C. Chem. Eur. J 2011, 17, 14450.
doi: 10.1002/chem.201101615 |
36 |
Zhu F. ; Wang Z.-X. Org. Lett 2015, 17, 1601.
doi: 10.1021/acs.orglett.5b00510 |
37 |
Kokornaczyk A. ; Schepmann D. ; Yamaguchi J. ; Itami K. ; Wünsch B. Med. Chem. Commun 2016, 7, 327.
doi: 10.1039/C5MD00526D |
38 |
Hu L.-Q. ; Deng R.-L. ; Li Y. -F. ; Zeng C.-J. ; Shen D. -S. ; Liu F.-S. Organometallics 2018, 37, 214.
doi: 10.1021/acs.organomet.7b00784 |
39 |
Pivsa-Art S. ; Satoh T. ; Kawamura Y. ; Miura M. ; Nomura M. Bull. Chem. Soc. Jpn 1998, 71, 467.
doi: 10.1246/bcsj.71.467 |
40 |
Kondo Y. ; Komine T. ; Sakamoto T. Org. Lett 2000, 2, 3111.
doi: 10.1021/ol000183u |
41 |
Mori A. ; Sekiguchi A. ; Masui K. ; Shimada T. ; Horie M. ; Osakada K. ; Kawamoto M. ; Ikeda T. J. Am. Chem. Soc 2003, 125, 1700.
doi: 10.1021/ja0289189 |
42 |
Bellina F. ; Cauteruccio S. ; Fiore A. D. ; Marchetti C. ; Rossi R. Tetrahedron , 2008, 64, 6060.
doi: 10.1016/j.tet.2008.01.051 |
43 |
Tani S. ; Uehara T. N. ; Yamaguchi J. ; Itami K. Chem. Sci 2014, 5, 123.
doi: 10.1039/C3SC52199K |
44 |
Gorelsky S. I. Organometallics, 2012, 31, 794.
doi: 10.1021/om2012612 |
45 |
Oh K. H. ; Kim S. M. ; Lee M. J. ; Park J. K. Adv. Synth. Catal 2015, 357, 3927.
doi: 10.1002/adsc.201500726 |
46 |
Leow D. ; Li G. ; Mei T. -S. ; Yu J.-Q. Nature 2012, 486, 518.
doi: 10.1038/nature11158 |
47 |
Yang Y.-F. ; Cheng G. -J. ; Liu P. ; Leow D. ; Sun T. -Y. ; Chen P. ; Zhang X. ; Yu J. -Q. ; Wu Y. -D. ; Houk K. N. J. Am. Chem. Soc. 2014, 136, 344.
doi: 10.1021/ja410485g |
48 |
Fang L. ; Saint-Denis T. G. ; Taylor B. L. H. ; Ahlquist S. ; Hong K. ; Liu S. ; Han L. ; Houk K. N. ; Yu J.-Q. J. Am. Chem. Soc 2017, 139, 10702.
doi: 10.1021/jacs.7b03296 |
49 |
Anand M. ; Sunoj R. B. ; Schaefer H. F. J. Am. Chem. Soc 2014, 136, 5535.
doi: 10.1021/ja412770h |
50 |
Yoo E. J. ; Ma S. ; Mei T. -S.; ; Chan K. S. L. ; Yu J. J. Am. Chem. Soc. 2011, 133, 7652.
doi: 10.1021/ja202563w |
51 |
Anand M. ; Sunoj R. B. ; Schaefer H. F. ACS Catal 2016, 6, 696.
doi: 10.1021/acscatal.5b02639 |
52 |
Kleiman J. P. ; Dubeck M. J. Am. Chem. Soc. 1963, 85, 1544.
doi: 10.1021/ja00893a040 |
53 |
Clement N. D. ; Cavell K. J. Angew. Chem. Int. Ed 2004, 43, 3845.
doi: 10.1002/anie.200454166 |
54 |
Kanyiva K. S. ; Nakao Y. ; Hiyama T. Angew. Chem. Int. Ed 2007, 46, 8872.
doi: 10.1002/anie.200703758 |
55 |
Tobisu M. ; Hyodo I. ; Chatani N. J. Am. Chem. Soc. , 2009, 131, 12070.
doi: 10.1021/ja9053509 |
56 |
Hachiya H. ; Hirano K. ; Satoh T. ; Miura M. Angew. Chem. Int. Ed 2010, 49, 2202.
doi: 10.1002/anie.200906996 |
57 |
Vechorkin O. ; Proust V. ; Hu X. Angew. Chem. Int. Ed. 2010, 49, 3061.
doi: 10.1002/anie.200907040 |
58 |
Yao T. ; Hirano K. ; Satoh T. ; Miura M. Angew. Chem. Int. Ed 2012, 51, 775.
doi: 10.1002/anie.201106825 |
59 |
Amaike K. ; Muto K. ; Yamaguchi J. ; Itami K. J. Am. Chem. Soc 2012, 134, 13573.
doi: 10.1021/ja306062c |
60 |
Nett. A. J. ; Zhao W. ; Zimmerman P. M. ; Montgomery J. J. Am. Chem. Soc 2015, 137, 7636.
doi: 10.1021/jacs.5b04548 |
61 |
Misal Castro L. C. ; Chatani N. Chem. Lett 2015, 44, 410.
doi: 10.1246/cl.150024 |
62 |
Zhan B. ; Liu B. ; Hu F. ; Shi B. Chin. Sci. Bull 2015, 60, 2907.
doi: 10.1360/N972015-00389 |
63 |
Yang X. ; Shan G. ; Wang L. ; Rao Y. Tetrahedron Lett. , 2016, 57, 819.
doi: 10.1016/j.tetlet.2016.01.009 |
64 |
Nakao Y. ; Kanyiva K. S. ; Hiyama T. J. Am. Chem. Soc 2008, 130, 2448.
doi: 10.1021/ja710766j |
65 |
Tsai C.-C. ; Shih W. -C. ; Fang C.-H. ; Li C. -Y. ; Ong T. -G. ; Yap G. P. A. J. Am. Chem. Soc. 2010, 132, 11887.
doi: 10.1021/ja1061246 |
66 |
Nakao Y. ; Yamada Y. ; Kashihara N. ; Hiyama T. J. Am. Chem. Soc 2010, 132, 13666.
doi: 10.1021/ja106514b |
67 |
Lee W. -C. ; Chen C.-H. ; Liu C.-Y. ; Yu M. -S. ; Lin Y. -H. ; Ong T.-G. Chem. Commun. 2015, 51, 17104.
doi: 10.1039/C5CC07455J |
68 |
Shih W. -C. ; Chen W.-C. ; Lai Y. -C. ; Yu M. -S. ; Ho J.-J. ; Yap G. P. A. ; Ong T.-G. Org. Lett. 2012, 14, 2046.
doi: 10.1021/ol300570f |
69 |
Lee W. -C. ; Wang C. -H. ; Lin Y. -H. ; Shih W. -C. ; Ong T.-G. Org. Lett. 2013, 15, 5358.
doi: 10.1021/ol402644y |
70 |
Liu S. ; Sawicki J. ; Driver T. G. Org. Lett 2012, 14, 3744.
doi: 10.1021/ol301606y |
71 |
Yu M. -S. ; Lee W.-C. ; Chen C. -H. ; Tsai F. -Y. ; Ong T.-G. Org. Lett. 2014, 16, 4826.
doi: 10.1021/ol502314p |
72 |
Inoue F. ; Saito T. ; Semba K. ; Nakao Y. Chem. Commun 2017, 53, 4497.
doi: 10.1039/C7CC00852J |
73 |
Okumura S. ; Nakao Y. Asian J. Org. Chem 2018, 7, 1355.
doi: 10.1002/ajoc.201800208 |
74 |
Wang Y. -X. ; Qi S. -L. ; Luan Y. -X. ; Han X. -W. ; Wang S. ; Chen H. ; Ye M. J. Am. Chem. Soc. 2018, 140, 5360.
doi: 10.1021/jacs.8b02547 |
75 |
Nakao Y. ; Idei H. ; Kanyiva K. S. ; Hiyama T. J. Am. Chem. Soc 2009, 131, 15996.
doi: 10.1021/ja907214t |
76 |
Tamura R. ; Yamada Y. ; Nakao Y. ; Hiyama T. Angew. Chem. Int. Ed 2012, 51, 5679.
doi: 10.1002/anie.201200922 |
77 |
Donets P. A. ; Cramer N. Angew. Chem. Int. Ed. 2015, 54, 633.
doi: 10.1002/anie.201409669 |
78 |
Nakao Y. ; Idei H. ; Kanyiva K. S. ; Hiyama T. J. Am. Chem. Soc 2009, 131, 5070.
doi: 10.1021/ja901153s |
79 |
Nakao Y. ; Morita E. ; Idei H. ; Hiyama T. J. Am. Chem. Soc 2011, 133, 3264.
doi: 10.1021/ja1102037 |
80 |
Donets P. A. ; Cramer N. J. Am. Chem. Soc. , 2013, 135, 11772.
doi: 10.1021/ja406730t |
81 |
Okumura S. ; Tang S. ; Saito T. ; Semba K. ; Sakaki S. ; Nakao Y. J. Am. Chem. Soc 2016, 138, 14699.
doi: 10.1021/jacs.6b08767 |
82 |
Okumura S. ; Nakao Y. Org. Lett 2017, 19, 584.
doi: 10.1021/acs.orglett.6b03741 |
83 |
Okumura S. ; Komine T. ; Shigeki E. ; Semba K. ; Nakao Y. Angew. Chem. Int. Ed 2018, 57, 929.
doi: 10.1002/anie.201710520 |
84 |
Louillat M. ; Patureau F. W. Org. Lett 2013, 15, 164.
doi: 10.1021/ol303216u |
85 |
Dikarev E. V. ; Gray T. G. ; Li B. Angew. Chem. Int. Ed 2005, 44, 1721.
doi: 10.1002/anie.200462433 |
86 |
Dikarev E. V. ; Li B. ; Zhang H. T. J. Am. Chem. Soc 2006, 128, 2814.
doi: 10.1021/ja058294h |
87 |
Durivage J. C. ; Gruhn N. E. ; Li B. ; Dikarev E. V. ; Lichtenberger D. L. J. Cluster Sci 2008, 19, 275.
doi: 10.1007/s10876-007-0179-9 |
88 |
Hansen J. ; Li B. ; Dikarev E. ; Autschbach J. ; Davies H. M. L. J. Org. Chem 2009, 74, 6564.
doi: 10.1021/jo900998s |
89 |
Yang L. ; Semba K. ; Nakao Y. Angew. Chem. Int. Ed 2017, 56, 4853.
doi: 10.1002/anie.201701238 |
90 |
Hu Y. ; Zhou B. ; Chen H. ; Wang C. Angew. Chem. Int. Ed. , 2018, 57, 12071.
doi: 10.1002/anie.201806287 |
91 |
Zhou B. ; Hu Y. ; Liu T. ; Wang C. Nat. Commun 2017, 8, 1169.
doi: 10.1038/s41467-017-01262-4 |
92 |
Zhou B. ; Hu Y. ; Wang C. Angew. Chem. Int. Ed 2015, 54, 13659.
doi: 10.1002/anie.201506187 |
93 |
Negishi E. ; Kondakov D. Y. ; Choueiry D. ; Kasai K. ; Takahashi T. J. Am. Chem. Soc 1996, 118, 9577.
doi: 10.1021/ja9538039 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Fengyu Gao, Hengheng Liu, Xiaolong Yao, Zaharaddeen Sani, Xiaolong Tang, Ning Luo, Honghong Yi, Shunzheng Zhao, Qingjun Yu, Yuansong Zhou. Spherical MnxCo3−xO4−ƞ Spinel with Mn-Enriched Surface as High-Efficiency Catalysts for Low-Temperature Selective Catalytic Reduction of NOx by NH3 [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212003-0. |
[3] | Tianjie Wang, Yaowei Wang, Yuhui Chen, Jianpeng Liu, Huibing Shi, Limin Guo, Zhiwei Zhao, Chuntai Liu, Zhangquan Peng. Toward Practical Lithium-Air Batteries by Avoiding Negative Effects of CO2 [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2009071-. |
[4] | Xianhong Chen, Pengchao Ruan, Xianwen Wu, Shuquan Liang, Jiang Zhou. Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2111003-. |
[5] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[6] | Peng Chen, Ying Zhou, Fan Dong. Advances in Regulation Strategies for Electronic Structure and Performance of Two-Dimensional Photocatalytic Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010010-. |
[7] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[8] | Xuehua Zhang, Yanwei Cao, Qiongyao Chen, Chaoren Shen, Lin He. Recent Progress in Homogeneous Reductive Carbonylation of Carbon Dioxide with Hydrogen [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2007052-. |
[9] | Jihong Zhang, Dichang Zhong, Tongbu Lu. Co(Ⅱ)-Based Molecular Complexes for Photochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2008068-. |
[10] | Zhen WANG,En LI,Zhiqi HE,Jiean CHEN,Yong HUANG. Dehydrogenative Annulation of γ, δ-Unsaturated Amides and Alkynes via Double C―H Activation [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 906-912. |
[11] | Mengdi ZHAO,Wenjun LU. Alkanes Functionalization via C―H Activation [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 977-988. |
[12] | Yuelu ZHU,Xinyang ZHAO,Qian WU,Ying CHEN,Jing ZHAO. Research Advances in C―H Bond Activation of Multitasking N-Phenoxyamides [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 989-1004. |
[13] | Lu WANG, Wei SUN, Chao LIU. Homodinuclear Ferrous Group Metal Complexes and Their Application in Homogeneous Catalysis [J]. Acta Physico-Chimica Sinica, 2019, 35(7): 697-708. |
[14] | Yue ZHAO,Jiatong CUI,Jichuang HU,Jiabi MA. Reactivities of VO1–4+ Toward n-CmH2m+2 (m = 3, 5, 7) as Functions of Oxygen Content and Carbon Chain Length [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 531-538. |
[15] | Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones [J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958. |
|