Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (3): 2005020.doi: 10.3866/PKU.WHXB202005020
• REVIEW • Previous Articles Next Articles
Jiangtao Huang1, Jiang Zhou1,2,*(), Shuquan Liang1,2,*()
Received:
2020-05-08
Accepted:
2020-07-02
Published:
2020-07-13
Contact:
Jiang Zhou,Shuquan Liang
E-mail:zhou_jiang@csu.edu.cn;lsq@csu.edu.cn
About author:
Shuquan Liang. Email: lsq@csu.edu.cn (S. L.)Supported by:
Jiangtao Huang, Jiang Zhou, Shuquan Liang. Guest Pre-Intercalation Strategy to Boost the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes[J]. Acta Phys. -Chim. Sin. 2021, 37(3), 2005020. doi: 10.3866/PKU.WHXB202005020
Table 1
Properties of some typical guest pre-intercalated vanadium-based materials."
Vanadium-based materials (Ref.) | Voltage (vs. Zn/Zn2+) | Electrolyte types | Diffusion coefficient of Zn2+ | Capacity (current density) | Cycle numbers (current density) |
V3O7·H2O | 0.4–1.3 V | 3 mol·L-1 Zn(CF3SO3)2 | 10-12 cm2·S-1 | 290 mAh·g-1 (0.5 A·g-1) | 2000 (5 A·g-1) |
Na0.33V2O5 | 0.2–1.6 V | 3 mol·L-1 Zn(CF3SO3)2 | – | 367 mAh·g-1 (0.1 A·g-1) | 1000 (1 A·g-1) |
Li3V2(PO4)3 | 0.2–1.9 V | 4 mol·L-1 Zn(CF3SO3)2 | 10-13–10-14 cm2·S-1 | 122 mAh·g-1 (60C) | 4000 (10C) |
Zn0.25V2O5·nH2O | 0.5–1.4 V | 1 mol·L-1 ZnSO4 | 10-9–10-10 cm2·S-1 | 260 mAh·g-1 (2.4 A·g-1) | 1000 (2.4 A·g-1) |
NH4V4O10 | 0.4–1.4 V | 2 mol·L-1 ZnSO4 | 10-8–10-9 cm2·S-1 | 361.6 mAh·g-1 (1 A·g-1) | 1000 (10 A·g-1) |
VNxOy | 0.4–1.4 V | 2 mol·L-1 ZnSO4 | 10-12–10-16 cm2·S-1 | 200 mAh·g-1 (30 A·g-1) | 2000 (20 A·g-1) |
V2O5 | 0.4–1.4 V | 3 mol·L-1 ZnSO4 | – | 220 mAh·g-1 (0.1 A·g-1) | 400 (2 A·g-1) |
V2O5·nH2O | 0.2–1.6 V | 3 mol·L-1 Zn(CF3SO3)2 | 6.0 × 10-13 cm2·S-1 | 372 mAh·g-1 (0.3 A·g-1) | 900 (6 A·g-1) |
V5O12·6H2O | 0.2–1.6 V | 3 mol·L-1 Zn(CF3SO3)2 | 10-10–10-11 cm2·S-1 | 354.8 mAh·g-1 (0.5 A·g-1) | 1000 (2 A·g-1) |
Ca0.24V2O5·0.83H2O | 0.6–1.6 V | 1 mol·L-1 ZnSO4 | 10-8–10-9 cm2·S-1 | 340 mAh·g-1 (0.2C) | 3000 (80C) |
Cu0.1V2O5·0.08H2O | 0.4–1.4 V | 2 mol·L-1 ZnSO4 | 10-8–10-9 cm2·S-1 | 359 mAh·g-1 (1 A·g-1) | 10000 (10 A·g-1) |
Mn0.15V2O5·nH2O | 0.2–1.7 V | 1 mol·L-1 Zn(ClO4)2 | 10-10–10-12 cm2·S-1 | 367 mAh·g-1 (0.1 A·g-1) | 8000 (10 A·g-1) |
LixV2O5·nH2O | 0.4–1.4 V | 2 mol·L-1 ZnSO4 | 3.37 × 10-8 cm2·S-1 | 407.6 mAh·g-1 (1 A·g-1) | 1000 (10 A·g-1) |
Zn0.3V2O5·1.5H2O | 0.3–1.6 V | 3 mol·L-1 Zn(CF3SO3)2 | 10-9–10-10 cm2·S-1 | 426 mAh·g-1 (0.2 A·g-1) | 20000 (10 A·g-1) |
Ni0.25V2O5·nH2O | 0.3–1.7 V | 3 mol·L-1 Zn(CF3SO3)2 | 10-8–10-10 cm2·S-1 | 402 mAh·g-1 (0.2 A·g-1) | 1200 (5 A·g-1) |
Ag0.4V2O5 | 0.4–1.4 V | 3 mol·L-1 ZnSO4 | 10-8 cm2·S-1 | 237 mAh·g-1 (0.5 A·g-1) | 4000 (20 A·g-1) |
Co0.247V2O5·0.944H2O | 0.6–2.2 V | 21 mol·L-1 LiTFSI + 1 mol·L-1 Zn (CF3SO3)2 | – | 432 mAh·g-1 (0.1 A·g-1) | 7500 (10 A·g-1) |
LiV3O8 | 0.6–1.2 V | 1 mol·L-1 ZnSO4 | – | 200 mAh·g-1 (0.133 A·g-1) | 65 (0.133 A·g-1) |
HNaV6O16·4H2O | 0.4–1.4 V | 2 mol·L-1 ZnSO4 | 10-10 cm2·S-1 | 304 mAh·g-1 (0.5 A·g-1) | 2000 (5 A·g-1) |
Na0.76V6O15 | 0.4–1.4 V | 2 mol·L-1 ZnSO4 | 10-10 cm2·S-1 | 135 mAh·g-1 (0.5 A·g-1) | 1000 (2 A·g-1) |
Na5V12O32 | 0.4–1.4 V | 2 mol·L-1 ZnSO4 | 10-10 cm2·S-1 | 281 mAh·g-1 (0.5 A·g-1) | 2000 (4 A·g-1) |
K2V6O16·1.57H2O | 0.4–1.4 V | 2 mol·L-1 ZnSO4 | 10-10–10-12 cm2·S-1 | 220 mAh·g-1 (0.1 A·g-1) | 50 (0.5 A·g-1) |
K2V8O21 | 0.4–1.4 V | 2 mol·L-1 ZnSO4 | 10-10–10-11 cm2·S-1 | 247 mAh·g-1 (0.3 A·g-1) | 300 (6 A·g-1) |
NaV3O8·1.5H2O | 0.3–1.25 V | 1 mol·L-1 ZnSO4 + 1 mol·L-1 Na2SO4 | – | 380 mAh·g-1 (0.05 A·g-1) | 1000 (4 A·g-1) |
NaCa0.6V6O16·3H2O | 0.4–1.5 V | 3 mol·L-1 Zn(CF3SO3)2 | 10-8 cm2·S-1 | 347 mAh·g-1 (0.1 A·g-1) | 10000 (5 A·g-1) |
Zn3V2O7(OH)2·2H2O | 0.2–1.8 V | 1 mol·L-1 ZnSO4 | 10-9–10-10 cm2·S-1 | 213 mAh·g-1 (0.05 A·g-1) | 300 (0.2 A·g-1) |
CuV2O6 | 0.3–1.6 V | 3 mol·L-1 Zn(CF3SO3)2 | 10-9–10-12 cm2·S-1 | 427 mAh·g-1 (0.1 A·g-1) | 3000 (5 A·g-1) |
H11Al2V6O23.2 | 0.4–1.4 V | 2 mol·L-1 ZnSO4 | 10-7–10-8 cm2·S-1 | 305.4 mAh·g-1 (1 A·g-1) | 400 (2 A·g-1) |
VOPO4 | 0.8–2.1 V | 21 mol·L-1 LiTFSI + 1 mol·L-1 Zn (CF3SO3)2 | – | 139 mAh·g-1 (0.05 A·g-1) | 1000 (1 A·g-1) |
Na3V2(PO4)3 | 0.8–1.7 V | 0.5 mol·L-1 Zn(CH3COO)2 | – | 97 mAh·g-1 (0.05 A·g-1) | 100 (0.05 A·g-1) |
Na3V2(PO4)2F3 | 0.8–1.9 V | 2 mol·L-1 Zn(CF3SO3)2 | 10-11–10-12 cm2·S-1 | 64.7 mAh·g-1 (0.08 A·g-1) | 4000 (1 A·g-1) |
PEDOT-NH4V3O8 | 0.4–1.6 V | 3 mol·L-1 Zn(CF3SO3)2 | 10-9 cm2·S-1 | 356.8 mAh·g-1 (0.05 A·g-1) | 5000 (10 A·g-1) |
PPy-VOPO4 | 0.5–2 V | 1 mol·L-1 Zn(CF3SO3)2/ acetonitrile + water | – | 86 mAh·g-1 (0.025 A·g-1) | 350 (0.1 A·g-1) |
C12-VOx | 0.3–1.9 V | 3 mol·L-1 Zn(CF3SO3)2 | – | 314.6 mAh·g-1 (0.1 A·g-1) | 950 (2.4 A·g-1) |
Fig 8
(a) Cycling performance of NaV3O8·1.5H2O in ZnSO4 at 0.5 A·g-1 and (inset) optical images of electrolytes containing NaV3O8·1.5H2O for different periods; (b) cycling performance of NaV3O8·1.5H2O at 1 A·g-1 in two electrolytes 92; (c) potential path and (d) energy barrier of Zn2+ diffusion in NaCa0.6V6O16·3H2O 93."
Table 2
Properties of some typical guest pre-intercalated Mn-based materials."
Types of Mn-based materials (Ref) | Reaction mechanism | Voltage (vs Zn/Zn2+) | Electrolyte | Capacity (Maximum cycle number) | |
Tunnel structure | α-MnO2 | Conversion reaction | 1.0–1.8 V | 2 mol·L-1 ZnSO4 + 0.1 mol·L-1 MnSO4 | 285 mAh·g-1 at C/3 (5000 at 5C) |
(α) K0.8Mn8O16 | Conversion reaction & H+ insertion | 1.0–1.8 V | 2 mol·L-1 ZnSO4 + 0.1 mol·L-1 MnSO4 | 320 mAh·g-1 at 0.1 A·g-1 (1000 at 1 A·g-1) | |
(α) K0.19MnO2 | Zn2+/H+ co-insertion | 0.8–1.9 V | 3 mol·L-1 Zn(CF3SO3)2 + 0.2 mol·L-1 Mn(CF3SO3)2 | 113 mAh·g-1 at 20C (400 at 5C) | |
(α) ZnxMnO2 | Zn2+ insertion | 0.0–2.0 V | 2 mol·L-1 ZnSO4 + 0.4 mol·L-1 MnSO4 | 1746 mF·cm-2 at 2 mA·cm-2 (5000 at 15 mA·cm-2) | |
Mg1.8Mn6O12·4.8H2O | Zn2+ insertion | 0.7–2.0 V | 1 mol·L-1 ZnSO4 | 108 mAh·g-1 at C/2 (50) | |
Layer structure | δ-MnO2 | Zn2+ insertion | 1.0–1.8 V | 1 mol·L-1 ZnSO4 | 289 mAh·g-1 at 0.05 A·g-1 (150 at 0.15 A·g-1) |
(δ) Na0.55Mn2O4·0.57H2O | Zn2+/H+ co-insertion | 0.8–1.9 V | 2 mol·L-1 ZnSO4 + 0.2 mol·L-1 MnSO4 | 390 mAh·g-1 at 0.2 A·g-1 (400 at 0.5 A·g-1) | |
δ-MnO2·nH2O | Zn2+ insertion | 1.0–1.9 V | 1 mol·L-1 ZnSO4 | 350 mAh·g-1 at 0.1 A·g-1 (200 at 3 A·g-1) | |
(δ) Na0.95MnO2 | Na+ insertion | 1.0–2.0 V | 0.5 mol·L-1 Zn(CH3COO)2 + 0.5 mol·L-1 CH3COONa | 60 mAh·g-1 at 2C (1000 at 4C) | |
(δ) ZnxMnO2·nH2O | Zn2+/H+ co-insertion | 1.0–1.9 V | 2 mol·L-1 ZnSO4 + 0.1 mol·L-1 MnSO4 | 358 mAh·g-1 at 0.3 A·g-1 (2000 at 3 A·g-1) | |
(δ) Ca0.28MnO2·0.5H2O | Zn2+/H+ co-insertion | 0.4–1.9 V | 2 mol·L-1 ZnSO4 + 0.1 mol·L-1 MnSO4 | 298 mAh·g-1 at 0.175 A·g-1 (5000 at 3.5 A·g-1) | |
(δ) P-MnO2-x | Zn2+/H+ co-insertion | 1.0–1.8 V | 2 mol·L-1 ZnSO4 + 0.2 mol·L-1 MnSO4 | 303 mAh·g-1 at 0.5 A·g-1 (1000 at 2 A·g-1) | |
(δ) PANI-MnO2 | Zn2+/H+ co-insertion | 1.0–1.8 V | 2 mol·L-1 ZnSO4 + 0.1 mol·L-1 MnSO4 | 280 mAh·g-1 at 0.2 A·g-1 (5000 at 2 A·g-1) | |
(δ) PPy-MnOx | Zn2+ insertion | 1.0–1.8 V | 2 mol·L-1 ZnSO4 + 0.1 mol·L-1 MnSO4 | 408 mAh·g-1 at 1C (2800 at 5C) | |
Spinel structure | ZnMn2O4 | Zn2+ insertion | 0.8–1.9 V | 3 mol·L-1 Zn(CF3SO3)2 | 150 mAh·g-1 at 0.05 A·g-1 (500 at 0.5 A·g-1) |
LiMn2O4 | Conversion reaction & Li+/H+ insertion | 0.9–1.8 V | 1 mol·L-1 (ZnSO4 + Li2SO4) + 0.1 mol·L-1 MnSO4 | 280 mAh·g-1 at 0.1 A·g-1 (2000 at 2 A·g-1) | |
MgMn2O4 | Zn2+/Mg2+ co-insertion | 0.5–1.9 V | 1 mol·L-1 (ZnSO4 + MgSO4) + 0.1 mol·L-1 MnSO4 | 269 mAh·g-1 at 0.1 A·g-1 (500 at 0.5 A·g-1) | |
Other structures | (ε) LaxCayMnO2 | Zn2+ insertion | 0.8–1.9 V | 1 mol·L-1 ZnSO4 + 0.4 mol·L-1 MnSO4 | 297 mAh·g-1 at 0.2 A·g-1 (200) |
Ca2MnO4 | Zn2+ insertion | 0.8–1.8 V | 2 mol·L-1 ZnSO4 + 0.1 mol·L-1 MnSO4 | 250 mAh·g-1 at 0.1 A·g-1 (1000 at 1 A·g-1) |
Fig 15
(a) Schematic illustration of Zn2+ insertion/extraction in ZnMn2O4 spinel framework; (b) proposed Zn2+ diffusion pathway in ZnMn2O4 spinel without and with Mn vacancies 59; (c) GITT profiles and calculated Zn2+ diffusion coefficient of ZMO/C and ZMO + C electrodes; (d) crystal structure, (e) charge/discharge profiles and (f) corresponding cycle performance of MgMn2O4 at 500 mA·g-1 136."
1 |
Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
doi: 10.1126/science.1212741 |
2 |
Liang Y. ; Zhao C. Z. ; Yuan H. ; Chen Y. ; Zhang W. ; Huang J. Q. ; Yu D. ; Liu Y. ; Titirici M. M. ; Chueh Y. L. ; et al InfoMat 2019, 1, 6.
doi: 10.1002/inf2.12000 |
3 |
Wang S. ; Yang Y. ; Dong Y. ; Zhang Z. ; Tang Z. J. Adv. Ceram. 2019, 8, 1.
doi: 10.1007/s40145-018-0292-2 |
4 |
Evarts E. C. Nature 2015, 526, S93.
doi: 10.1038/526S93a |
5 |
Wessells C. D. ; Huggins R. A. ; Cui Y. Nat. Commun. 2011, 2, 550.
doi: 10.1038/ncomms1563 |
6 |
Wessells C. D. ; Peddada S. V. ; Huggins R. A. ; Cui Y. Nano Lett. 2011, 11, 5421.
doi: 10.1021/nl203193q |
7 |
Li Z. ; Young D. ; Xiang K. ; Carter W. C. ; Chiang Y. M. Adv. Energy Mater. 2013, 3, 290.
doi: 10.1002/aenm.201200598 |
8 |
Zhang H. ; Ye K. ; Shao S. ; Wang X. ; Cheng K. ; Xiao X. ; Wang G. ; Cao D. Electrochim. Acta 2017, 229, 371.
doi: 10.1016/j.electacta.2017.01.110 |
9 |
Liu S. ; Hu J. J. ; Yan N. F. ; Pan G. L. ; Li G. R. ; Gao X. P. Energy Environ. Sci. 2012, 5, 9743.
doi: 10.1039/c2ee22987k |
10 |
Adil M. ; Sarkar A. ; Roy A. ; Panda M. R. ; Nagendra A. ; Mitra S. ACS Appl. Mater. Inter. 2020, 12, 11489.
doi: 10.1021/acsami.9b20129 |
11 |
Wu X. ; Xiang Y. ; Peng Q. ; Wu X. ; Li Y. ; Tang F. ; Song R. ; Liu Z. ; He Z. ; Wu X. J. Mater. Chem. A 2017, 5, 17990.
doi: 10.1039/c7ta00100b |
12 | Liu S. ; Shao L. ; Zhang X. ; Tao Z. ; Chen J. Acta Phys. -Chim. Sin. 2018, 34, 581. |
刘双; 邵涟漪; 张雪静; 陶占良; 陈军. 物理化学学报, 2018, 34, 581.
doi: 10.3866/PKU.WHXB201711222 |
|
13 |
Fang G. ; Wu Z. ; Zhou J. ; Zhu C. ; Cao X. ; Lin T. ; Chen Y. ; Wang C. ; Pan A. ; Liang S. Adv. Energy Mater. 2018, 8, 1703155.
doi: 10.1002/aenm.201703155 |
14 | Cao X. ; Zhou J. ; Pan A. ; Liang S. Acta Phys. -Chim. Sin. 2020, 36, 1905018. |
曹鑫鑫; 周江; 潘安强; 梁叔全. 物理化学学报, 2020, 36, 1905018.
doi: 10.3866/PKU.WHXB201905018 |
|
15 |
Zhao C. ; Lu Y. ; Chen L. ; Hu Y. S. InfoMat 2019, 2, 126.
doi: 10.1002/inf2.12027 |
16 |
Feng Y. ; Chen S. ; Wang J. ; Lu B. J. Energy Chem. 2020, 43, 129.
doi: 10.1016/j.jechem.2019.08.013 |
17 |
Xu W. ; Wang Y. Nano-Micro Lett. 2019, 11, 90.
doi: 10.1007/s40820-019-0322-9 |
18 |
Li C. ; Xie X. ; Liang S. ; Zhou J. Energy Environ. Mater. 2020,
doi: 10.1002/eem2.12067 |
19 |
Shoji T. ; Hishinuma M. ; Yamamoto T. J. Appl. Electrochem. 1988, 18, 521.
doi: 10.1007/bf01022245 |
20 | Bai S. ; Li X. ; Wen Y. ; Cheng J. ; Cao G. ; Yang Y. ; Li D. Acta Phys. -Chim. Sin. 2016, 32, 2007. |
白守礼; 李欣; 文越华; 程杰; 曹高萍; 杨裕生; 李殿卿. 物理化学学报, 2016, 32, 2007.
doi: 10.3866/PKU.WHXB201604261 |
|
21 |
Song M. ; Tan H. ; Chao D. ; Fan H. J. Adv. Funct. Mater. 2018, 28, 1802564.
doi: 10.1002/adfm.201802564 |
22 |
Xie X. ; Liang S. ; Gao J. ; Guo S. ; Guo J. ; Wang C. ; Xu G. ; Wu X. ; Chen G. ; Zhou J. Energy Environ. Sci. 2020, 13, 503.
doi: 10.1039/c9ee03545a |
23 |
Deng C. ; Xie X. ; Han J. ; Tang Y. ; Gao J. ; Liu C. ; Shi X. ; Zhou J. ; Liang S. Adv. Funct. Mater. 2020, 2000599
doi: 10.1002/adfm.202000599 |
24 |
Zhang N. ; Cheng F. ; Liu J. ; Wang L. ; Long X. ; Liu X. ; Li F. ; Chen J. Nat. Commun. 2017, 8, 405.
doi: 10.1038/s41467-017-00467-x |
25 |
Sun W. ; Wang F. ; Hou S. ; Yang C. ; Fan X. ; Ma Z. ; Gao T. ; Han F. ; Hu R. ; Zhu M. ; Wang C. J. Am. Chem. Soc. 2017, 139, 9775.
doi: 10.1021/jacs.7b04471 |
26 |
Hu P. ; Zhu T. ; Wang X. ; Wei X. ; Yan M. ; Li J. ; Luo W. ; Yang W. ; Zhang W. ; Zhou L. ; et al Nano Lett. 2018, 18, 1758.
doi: 10.1021/acs.nanolett.7b04889 |
27 |
Yadav G. G. ; Turney D. ; Huang J. ; Wei X. ; Banerjee S. ACS Energy Lett. 2019, 4, 2144.
doi: 10.1021/acsenergylett.9b01643 |
28 |
Guo X. ; Zhou J. ; Bai C. ; Li X. ; Fang G. ; Liang S. Mater. Today Energy 2020, 16, 100396.
doi: 10.1016/j.mtener.2020.100396 |
29 |
Pan H. ; Shao Y. ; Yan P. ; Cheng Y. ; Han K. S. ; Nie Z. ; Wang C. ; Yang J. ; Li X. ; Bhattacharya P. ; et al Nat. Energy 2016, 1, 16039.
doi: 10.1038/nenergy.2016.39 |
30 |
Liu F. ; Chen Z. ; Fang G. ; Wang Z. ; Cai Y. ; Tang B. ; Zhou J. ; Liang S. Nano-Micro Lett. 2019, 11, 25.
doi: 10.1007/s40820-019-0256-2 |
31 |
Wang P. ; Shi X. ; Wu Z. ; Guo S. ; Zhou J. ; Liang S. Carbon Energy 2020, 2, 294.
doi: 10.1002/cey2.39 |
32 |
Li X. ; Li M. ; Yang Q. ; Li H. ; Xu H. ; Chai Z. ; Chen K. ; Liu Z. ; Tang Z. ; Ma L. ; et al ACS Nano 2020, 14, 541.
doi: 10.1021/acsnano.9b06866 |
33 |
Li Z. ; Ganapathy S. ; Xu Y. ; Zhou Z. ; Sarilar M. ; Wagemaker M. Adv. Energy Mater. 2019, 9, 1900237.
doi: 10.1002/aenm.201900237 |
34 |
Naveed A. ; Yang H. ; Shao Y. ; Yang J. ; Yanna N. ; Liu J. ; Shi S. ; Zhang L. ; Ye A. ; He B. ; Wang J. Adv. Mater. 2019, 31, e1900668.
doi: 10.1002/adma.201900668 |
35 |
Xu D. ; Li B. ; Wei C. ; He Y. B. ; Du H. ; Chu X. ; Qin X. ; Yang Q. H. ; Kang F. Electrochim. Acta 2014, 133, 254.
doi: 10.1016/j.electacta.2014.04.001 |
36 |
Wu Y. ; Wang M. ; Tao Y. ; Zhang K. ; Cai M. ; Ding Y. ; Liu X. ; Hayat T. ; Alsaedi A. ; Dai S. Adv. Funct. Mater. 2019, 30, 1907120.
doi: 10.1002/adfm.201907120 |
37 |
Zhao Y. ; Zhu Y. ; Zhang X. InfoMat 2020, 2, 237.
doi: 10.1002/inf2.12042 |
38 |
Ma L. ; Chen S. ; Long C. ; Li X. ; Zhao Y. ; Liu Z. ; Huang Z. ; Dong B. ; Zapien J.A. ; Zhi C. Adv. Energy Mater. 2019, 9, 1902446.
doi: 10.1002/aenm.201902446 |
39 |
Zhang L. ; Chen L. ; Zhou X. ; Liu Z. Adv. Energy Mater. 2015, 5, 1400930.
doi: 10.1002/aenm.201400930 |
40 |
Kasiri G. ; Glenneberg J. ; Bani Hashemi A. ; Kun R. ; La Mantia F. Energy Storage Mater. 2019, 19, 360.
doi: 10.1016/j.ensm.2019.03.006 |
41 |
Wan F. ; Zhang L. ; Wang X. ; Bi S. ; Niu Z. ; Chen J. Adv. Funct. Mater. 2018, 28, 1804975.
doi: 10.1002/adfm.201804975 |
42 |
Shi H. Y. ; Ye Y. J. ; Liu K. ; Song Y. ; Sun X. Angew. Chem. Int. Edit. 2018, 57, 16359.
doi: 10.1002/anie.201808886 |
43 |
Wang Z. ; Ruan Z. ; Liu Z. ; Wang Y. ; Tang Z. ; Li H. ; Zhu M. ; Hung T. F. ; Liu J. ; Shi Z. ; Zhi C. J. Mater. Chem. A 2018, 6, 8549.
doi: 10.1039/c8ta01172a |
44 |
Yan L. ; Zeng X. ; Li Z. ; Meng X. ; Wei D. ; Liu T. ; Ling M. ; Lin Z. ; Liang C. Mater. Today Energy 2019, 13, 323.
doi: 10.1016/j.mtener.2019.06.011 |
45 |
Yue X. ; Liu H. ; Liu P. Chem. Commun. 2019, 55, 1647.
doi: 10.1039/c8cc10060h |
46 |
Cui J. ; Guo Z. ; Yi J. ; Liu X. ; Wu K. ; Liang P. ; Li Q. ; Liu Y. ; Wang Y. ; Xia Y. ; Zhang J. ChemSusChem 2020, 55, 1647.
doi: 10.1002/cssc.201903265 |
47 |
Wang Y. ; Wang C. ; Ni Z. ; Gu Y. ; Wang B. ; Guo Z. ; Wang Z. ; Bin D. ; Ma J. ; Wang Y. Adv. Mater. 2020, 32, e2000338.
doi: 10.1002/adma.202000338 |
48 |
Ma L. ; Chen S. ; Li H. ; Ruan Z. ; Tang Z. ; Liu Z. ; Wang Z. ; Huang Y. ; Pei Z. ; Zapien J. A. ; Zhi C. Energy Environ. Sci. 2018, 11, 2521.
doi: 10.1039/C8EE01415A |
49 |
Meng J. ; Yang Z. ; Chen L. ; Qin H. ; Cui F. ; Jiang Y. ; Zeng X. Mater. Today Energy 2020, 15, 100370.
doi: 10.1016/j.mtener.2019.100370 |
50 |
Liu Y. ; Wang J. ; Zeng Y. ; Liu J. ; Liu X. ; Lu X. Small 2020, 16, e1907458.
doi: 10.1002/smll.201907458 |
51 |
Cheng Y. ; Luo L. ; Zhong L. ; Chen J. ; Li B. ; Wang W. ; Mao S. X. ; Wang C. ; Sprenkle V. L. ; Li G. ; Liu J. ACS Appl. Mater. Inter. 2016, 8, 13673.
doi: 10.1021/acsami.6b03197 |
52 |
Xu X. ; Xiong F. ; Meng J. ; Wang X. ; Niu C. ; An Q. ; Mai L. Adv. Funct. Mater. 2020, 30, 1904398.
doi: 10.1002/adfm.201904398 |
53 |
Zhu C. ; Fang G. ; Liang S. ; Chen Z. ; Wang Z. ; Ma J. ; Wang H. ; Tang B. ; Zheng X. ; Zhou J. Energy Storage Mater. 2020, 24, 394.
doi: 10.1016/j.ensm.2019.07.030 |
54 |
Fang G. ; Zhou J. ; Pan A. ; Liang S. ACS Energy Lett. 2018, 3, 2480.
doi: 10.1021/acsenergylett.8b01426 |
55 |
He P. ; Zhang G. ; Liao X. ; Yan M. ; Xu X. ; An Q. ; Liu J. ; Mai L. Adv. Energy Mater. 2018, 8, 1702463.
doi: 10.1002/aenm.201702463 |
56 |
Canepa P. ; Sai Gautam G. ; Hannah D. C. ; Malik R. ; Liu M. ; Gallagher K. G. ; Persson K. A. ; Ceder G. Chem. Rev. 2017, 117, 4287.
doi: 10.1021/acs.chemrev.6b00614 |
57 |
Wang F. ; Hu E. ; Sun W. ; Gao T. ; Ji X. ; Fan X. ; Han F. ; Yang X. Q. ; Xu K. ; Wang C. Energy Environ. Sci. 2018, 11, 3168.
doi: 10.1039/c8ee01883a |
58 |
Whittingham M. S. Chem. Rev. 2004, 104, 4271.
doi: 10.1021/cr020731c |
59 |
Zhang N. ; Cheng F. ; Liu Y. ; Zhao Q. ; Lei K. ; Chen C. ; Liu X. ; Chen J. J. Am. Chem. Soc. 2016, 138, 12894.
doi: 10.1021/jacs.6b05958 |
60 |
Zhang T. ; Tang Y. ; Fang G. ; Zhang C. ; Zhang H. ; Guo X. ; Cao X. ; Zhou J. ; Pan A. ; Liang S. Adv. Funct. Mater. 2020, 2002711
doi: 10.1002/adfm.202002711 |
61 |
Soundharrajan V. ; Sambandam B. ; Kim S. ; Alfaruqi M. H. ; Putro D. Y. ; Jo J. ; Kim S. ; Mathew V. ; Sun Y. K. ; Kim J. Nano Lett. 2018, 18, 2402.
doi: 10.1021/acs.nanolett.7b05403 |
62 |
Kundu D. ; Adams B. D. ; Duffort V. ; Vajargah S. H. ; Nazar L. F. Nat. Energy 2016, 1, 16119.
doi: 10.1038/nenergy.2016.119 |
63 |
Tang B. ; Zhou J. ; Fang G. ; Liu F. ; Zhu C. ; Wang C. ; Pan A. ; Liang S. J. Mater. Chem. A 2019, 7, 940.
doi: 10.1039/c8ta09338e |
64 |
Tang B. ; Shan L. ; Liang S. ; Zhou J. Energy Environ. Sci. 2019, 12, 3288.
doi: 10.1039/c9ee02526j |
65 |
Jia D. ; Zheng K. ; Song M. ; Tan H. ; Zhang A. ; Wang L. ; Yue L. ; Li D. ; Li C. ; Liu J. Nano Res. 2020, 13, 215.
doi: 10.1007/s12274-019-2603-5 |
66 |
Wang H. ; Liu S. ; Ren Y. ; Wang W. ; Tang A. Energy Environ. Sci. 2012, 5, 6173.
doi: 10.1039/c2ee03215e |
67 |
Dong Y. ; Li S. ; Zhao K. ; Han C. ; Chen W. ; Wang B. ; Wang L. ; Xu B. ; Wei Q. ; Zhang L. ; et al Energy Environ. Sci. 2015, 8, 1267.
doi: 10.1039/c5ee00036j |
68 |
Fang G. ; Zhou J. ; Liang C. ; Cai Y. ; Pan A. ; Tan X. ; Tang Y. ; Liang S. J. Mater. Chem. A 2016, 4, 14408.
doi: 10.1039/C6TA05568K |
69 |
Fang G. ; Liang S. ; Chen Z. ; Cui P. ; Zheng X. ; Pan A. ; Lu B. ; Lu X. ; Zhou J. Adv. Funct. Mater. 2019, 29, 1905267.
doi: 10.1002/adfm.201905267 |
70 |
Chen D. ; Tan H. ; Rui X. ; Zhang Q. ; Feng Y. ; Geng H. ; Li C. ; Huang S. ; Yu Y. InfoMat 2019, 1, 251.
doi: 10.1002/inf2.12011 |
71 |
Tan H. ; Yu X. Z. ; Huang K. ; Zhong J. ; Lu B. J. Energy Chem. 2020, 51, 388.
doi: 10.1016/j.jechem.2020.03.053 |
72 |
Liu Z. ; Wang J. ; Lu B. Sci. Bull. 2020, 65, 1242.
doi: 10.1016/j.scib.2020.04.010 |
73 | Park H. K. ; Podolske K. ; Munshi Z. ; Smyrl W. ; Owens B. J. Ind. Eng. Chem. 1995, 1, 28. |
74 |
Le D. B. ; Passerini S. ; Coustier F. ; Guo J. ; Soderstrom T. ; Owens B. B. ; Smyrl W. H. Chem. Mater. 1998, 10, 682.
doi: 10.1021/cm9705101 |
75 |
Giorgetti M. ; Passerini S. ; Berrettoni M. ; Smyrl W. H. J. Synchrotron Radiat. 1999, 6, 743.
doi: 10.1107/S0909049598015970 |
76 |
Zhou J. ; Shan L. ; Wu Z. ; Guo X. ; Fang G. ; Liang S. Chem. Commun. 2018, 54, 4457.
doi: 10.1039/C8CC02250J |
77 |
Yan M. ; He P. ; Chen Y. ; Wang S. ; Wei Q. ; Zhao K. ; Xu X. ; An Q. ; Shuang Y. ; Shao Y. ; et al Adv. Mater. 2018, 30, 1703725.
doi: 10.1002/adma.201703725 |
78 |
Pang Q. ; Sun C. ; Yu Y. ; Zhao K. ; Zhang Z. ; Voyles P. M. ; Chen G. ; Wei Y. ; Wang X. Adv. Energy Mater. 2018, 8, 1800144.
doi: 10.1002/aenm.201800144 |
79 |
Zhang N. ; Jia M. ; Dong Y. ; Wang Y. ; Xu J. ; Liu Y. ; Jiao L. ; Cheng F. Adv. Funct. Mater. 2019, 29, 1807331.
doi: 10.1002/adfm.201807331 |
80 |
Shin J. ; Choi D.S. ; Lee H. J. ; Jung Y. ; Choi J. W. Adv. Energy Mater. 2019, 9, 1900083.
doi: 10.1002/aenm.201900083 |
81 |
Xia C. ; Guo J. ; Li P. ; Zhang X. ; Alshareef H. N. Angew. Chem. Int. Edit. 2018, 57, 3943.
doi: 10.1002/anie.201713291 |
82 |
Yang Y. ; Tang Y. ; Liang S. ; Wu Z. ; Fang G. ; Cao X. ; Wang C. ; Lin T. ; Pan A. ; Zhou J. Nano Energy 2019, 61, 617.
doi: 10.1016/j.nanoen.2019.05.005 |
83 |
Geng H. ; Cheng M. ; Wang B. ; Yang Y. ; Zhang Y. ; Li C. C. Adv. Funct. Mater. 2019, 30, 1907684.
doi: 10.1002/adfm.201907684 |
84 |
Yang Y. ; Tang Y. ; Fang G. ; Shan L. ; Guo J. ; Zhang W. ; Wang C. ; Wang L. ; Zhou J. ; Liang S. Energy Environ. Sci. 2018, 11, 3157.
doi: 10.1039/c8ee01651h |
85 |
Wang L. ; Huang K. W. ; Chen J. ; Zheng J. Sci. Adv. 2019, 5, eaax4279.
doi: 10.1126/sciadv.aax4279 |
86 |
Li J. ; McColl K. ; Lu X. ; Sathasivam S. ; Dong H. ; Kang L. ; Li Z. ; Zhao S. ; Kafizas A. G. ; Wang R. ; et al Adv. Energy Mater. 2020, 10, 2000058.
doi: 10.1002/aenm.202000058 |
87 |
Shan L. ; Yang Y. ; Zhang W. ; Chen H. ; Fang G. ; Zhou J. ; Liang S. Energy Storage Mater. 2019, 18, 10.
doi: 10.1016/j.ensm.2018.08.008 |
88 |
Ma L. ; Li N. ; Long C. ; Dong B. ; Fang D. ; Liu Z. ; Zhao Y. ; Li X. ; Fan J. ; Chen S. ; et al Adv. Funct. Mater. 2019, 29, 1906142.
doi: 10.1002/adfm.201906142 |
89 |
Alfaruqi M. H. ; Mathew V. ; Song J. ; Kim S. ; Islam S. ; Pham D. T. ; Jo J. ; Kim S. ; Baboo J. P. ; Xiu Z. ; et al Chem. Mater. 2017, 29, 1684.
doi: 10.1021/acs.chemmater.6b05092 |
90 |
Guo X. ; Fang G. ; Zhang W. ; Zhou J. ; Shan L. ; Wang L. ; Wang C. ; Lin T. ; Tang Y. ; Liang S. Adv. Energy Mater. 2018, 8, 1801819.
doi: 10.1002/aenm.201801819 |
91 |
Tang B. ; Fang G. ; Zhou J. ; Wang L. ; Lei Y. ; Wang C. ; Lin T. ; Tang Y. ; Liang S. Nano Energy 2018, 51, 579.
doi: 10.1016/j.nanoen.2018.07.014 |
92 |
Wan F. ; Zhang L. ; Dai X. ; Wang X. ; Niu Z. ; Chen J. Nat. Commun. 2018, 9, 1656.
doi: 10.1038/s41467-018-04060-8 |
93 |
Zhu K. ; Wu T. ; Huang K. Adv. Energy Mater. 2019, 9, 1901968.
doi: 10.1002/aenm.201901968 |
94 |
Xia C. ; Guo J. ; Lei Y. ; Liang H. ; Zhao C. ; Alshareef H. N. Adv. Mater. 2018, 30, 1705580.
doi: 10.1002/adma.201705580 |
95 |
Liu Y. ; Li Q. ; Ma K. ; Yang G. ; Wang C. ACS Nano 2019, 13, 12081.
doi: 10.1021/acsnano.9b06484 |
96 |
Zhang W. ; Liang S. ; Fang G. ; Yang Y. ; Zhou J. Nano-Micro Lett. 2019, 11, 69.
doi: 10.1007/s40820-019-0300-2 |
97 |
Wang F. ; Zhang Y. ; Zhang L. ; Liu D. ; Wang C. ; Song L. ; Niu Z. ; Chen J. Angew. Chem. Int. Edit. 2019, 58, 7062.
doi: 10.1002/anie.201902679 |
98 |
Li G. ; Yang Z. ; Jiang Y. ; Jin C. ; Huang W. ; Ding X. ; Huang Y. Nano Energy 2016, 25, 211.
doi: 10.1016/j.nanoen.2016.04.051 |
99 |
Li W. ; Wang K. ; Cheng S. ; Jiang K. Energy Storage Mater. 2018, 15, 14.
doi: 10.1016/j.ensm.2018.03.003 |
100 |
Bin D. ; Huo W. ; Yuan Y. ; Huang J. ; Liu Y. ; Zhang Y. ; Dong F. ; Wang Y. ; Xia Y. Chem 2020, 6, 968.
doi: 10.1016/j.chempr.2020.02.001 |
101 |
Verma V. ; Kumar S. ; Manalastas W. ; Zhao J. ; Chua R. ; Meng S. ; Kidkhunthod P. ; Srinivasan M. ACS Appl. Energy Mater. 2019, 2, 8667.
doi: 10.1021/acsaem.9b01632 |
102 |
Yang F. ; Zhu Y. ; Xia Y. ; Xiang S. ; Han S. ; Cai C. ; Wang Q. ; Wang Y. ; Gu M. J. Power Sources 2020, 451, 227767.
doi: 10.1016/j.jpowsour.2020.227767 |
103 |
Zhang Y. ; Li H. ; Huang S. ; Fan S. ; Sun L. ; Tian B. ; Chen F. ; Wang Y. ; Shi Y. ; Yang H. Y. Nano-Micro Lett. 2020, 12, 60.
doi: 10.1007/s40820-020-0385-7 |
104 |
Wang X. ; Xi B. ; Ma X. ; Feng Z. ; Jia Y. ; Feng J. ; Qian Y. ; Xiong S. Nano Lett. 2020, 20, 2899.
doi: 10.1021/acs.nanolett.0c00732 |
105 |
Liu C. ; Neale Z. ; Zheng J. ; Jia X. ; Huang J. ; Yan M. ; Tian M. ; Wang M. ; Yang J. ; Cao G. Energy Environ. Sci. 2019, 12, 2273.
doi: 10.1039/c9ee00956f |
106 |
Guo S. ; Fang G. ; Liang S. ; Chen M. ; Wu X. ; Zhou J. Acta Mater. 2019, 180, 51.
doi: 10.1016/j.actamat.2019.08.052 |
107 |
Sambandam B. ; Soundharrajan V. ; Kim S. ; Alfaruqi M. H. ; Jo J. ; Kim S. ; Mathew V. ; Sun Y. K. ; Kim J. J. Mater. Chem. A 2018, 6, 3850.
doi: 10.1039/c7ta11237h |
108 |
Shan L. ; Zhou J. ; Han M. ; Fang G. ; Cao X. ; Wu X. ; Liang S. J. Mater. Chem. A 2019, 7, 7355.
doi: 10.1039/C9TA00125E |
109 |
Liu Y. ; Li C. ; Xu J. ; Ou M. ; Fang C. ; Sun S. ; Qiu Y. ; Peng J. ; Lu G. ; Li Q. ; et al Nano Energy 2020, 67, 104211.
doi: 10.1016/j.nanoen.2019.104211 |
110 |
Peng Z. ; Wei Q. ; Tan S. ; He P. ; Luo W. ; An Q. ; Mai L. Chem. Commun. 2018, 54, 4041.
doi: 10.1039/c8cc00987b |
111 |
Ding J. ; Du Z. ; Li B. ; Wang L. ; Wang S. ; Gong Y. ; Yang S. Adv. Mater. 2019, 31, e1904369.
doi: 10.1002/adma.201904369 |
112 |
Cao X. ; Pan A. ; Yin B. ; Fang G. ; Wang Y. ; Kong X. ; Zhu T. ; Zhou J. ; Cao G. ; Liang S. Nano Energy 2019, 60, 312.
doi: 10.1016/j.nanoen.2019.03.066 |
113 |
Zeng J. ; Zhang Z. ; Guo X. ; Li G. J. Mater. Chem. A 2019, 7, 21079.
doi: 10.1039/C9TA08086D |
114 |
Xu C. ; Li B. ; Du H. ; Kang F. Angew. Chem. Int. Edit. 2012, 51, 933.
doi: 10.1002/anie.201106307 |
115 |
Alfaruqi M. H. ; Mathew V. ; Gim J. ; Kim S. ; Song J. ; Baboo J. P. ; Choi S. H. ; Kim J. Chem. Mater. 2015, 27, 3609.
doi: 10.1021/cm504717p |
116 |
Wei C. ; Xu C. ; Li B. ; Du H. ; Kang F. J. Phys. Chem. Solids 2012, 73, 1487.
doi: 10.1016/j.jpcs.2011.11.038 |
117 |
Jiang B. ; Xu C. ; Wu C. ; Dong L. ; Li J. ; Kang F. Electrochim. Acta 2017, 229, 422.
doi: 10.1016/j.electacta.2017.01.163 |
118 |
Zhu C. ; Fang G. ; Zhou J. ; Guo J. ; Wang Z. ; Wang C. ; Li J. ; Tang Y. ; Liang S. J. Mater. Chem. A 2018, 6, 9677.
doi: 10.1039/c8ta01198b |
119 |
Soundharrajan V. ; Sambandam B. ; Kim S. ; Islam S. ; Jo J. ; Kim S. ; Mathew V. ; Sun Y. K. ; Kim J. Energy Storage Mater. 2020, 28, 407.
doi: 10.1016/j.ensm.2019.12.021 |
120 |
Huang Y. ; Mou J. ; Liu W. ; Wang X. ; Dong L. ; Kang F. ; Xu C. Nano-Micro Lett. 2019, 11, 49.
doi: 10.1007/s40820-019-0278-9 |
121 |
Alfaruqi M. H. ; Islam S. ; Putro D. Y. ; Mathew V. ; Kim S. ; Jo J. ; Kim S. ; Sun Y. K. ; Kim K. ; Kim J. Electrochim. Acta 2018, 276, 1.
doi: 10.1016/j.electacta.2018.04.139 |
122 |
Zhai X. Z. ; Qu J. ; Hao S. M. ; Jing Y. Q. ; Chang W. ; Wang J. ; Li W. ; Abdelkrim Y. ; Yuan H. ; Yu Z. Z. Nano-Micro Lett. 2020, 12, 56.
doi: 10.1007/s40820-020-0397-3 |
123 |
Nam K. W. ; Kim H. ; Choi J. H. ; Choi J. W. Energy Environ. Sci. 2019, 12, 1999.
doi: 10.1039/c9ee00718k |
124 |
Wu B. ; Zhang G. ; Yan M. ; Xiong T. ; He P. ; He L. ; Xu X. ; Mai L. Small 2018, 14, e1703850.
doi: 10.1002/smll.201703850 |
125 |
Fang G. ; Zhu C. ; Chen M. ; Zhou J. ; Tang B. ; Cao X. ; Zheng X. ; Pan A. ; Liang S. Adv. Funct. Mater. 2019, 29, 1808375.
doi: 10.1002/adfm.201808375 |
126 |
Zhai D. ; Li B. ; Xu C. ; Du H. ; He Y. ; Wei C. ; Kang F. J. Power Sources 2011, 196, 7860.
doi: 10.1016/j.jpowsour.2011.05.015 |
127 |
Liu G. ; Huang H. ; Bi R. ; Xiao X. ; Ma T. ; Zhang L. J. Mater. Chem. A 2019, 7, 20806.
doi: 10.1039/c9ta08049j |
128 |
Chen Q. ; Jin J. ; Kou Z. ; Liao C. ; Liu Z. ; Zhou L. ; Wang J. ; Mai L. Small 2020, 16, e2000091.
doi: 10.1002/smll.202000091 |
129 |
Lee J. ; Ju J. B. ; Cho W. I. ; Cho B. W. ; Oh S. H. Electrochim. Acta 2013, 112, 138.
doi: 10.1016/j.electacta.2013.08.136 |
130 |
Zhang B. ; Liu Y. ; Wu X. ; Yang Y. ; Chang Z. ; Wen Z. ; Wu Y. Chem. Commun. 2014, 50, 1209.
doi: 10.1039/c3cc48382g |
131 |
Wang J. ; Wang J. G. ; Liu H. ; Wei C. ; Kang F. J. Mater. Chem. A 2019, 7, 13727.
doi: 10.1039/c9ta03541a |
132 |
Sun T. ; Nian Q. ; Zheng S. ; Shi J. ; Tao Z. Small 2020, 16, 2000597.
doi: 10.1002/smll.202000597 |
133 |
Zhang Y. ; Deng S. ; Pan G. ; Zhang H. ; Liu B. ; Wang X. L. ; Zheng X. ; Liu Q. ; Wang X. ; Xia X. ; Tu J. Small Methods 2020, 1900828
doi: 10.1002/smtd.201900828 |
134 |
Huang J. ; Wang Z. ; Hou M. ; Dong X. ; Liu Y. ; Wang Y. ; Xia Y. Nat. Commun. 2018, 9, 2906.
doi: 10.1038/s41467-018-04949-4 |
135 |
Zang X. ; Wang X. ; Liu H. ; Ma X. ; Wang W. ; Ji J. ; Chen J. ; Li R. ; Xue M. ACS Appl. Mater. Inter. 2020, 12, 9347.
doi: 10.1021/acsami.9b22470 |
136 |
Soundharrajan V. ; Sambandam B. ; Kim S. ; Mathew V. ; Jo J. ; Kim S. ; Lee J. ; Islam S. ; Kim K. ; Sun Y. K. ; Kim J. ACS Energy Lett. 2018, 3, 1998.
doi: 10.1021/acsenergylett.8b01105 |
137 |
Zhang M. ; Wu W. ; Luo J. ; Zhang H. ; Liu J. ; Liu X. ; Yang Y. ; Lu X. J. Mater. Chem. A 2020,
doi: 10.1039/D0TA03706K |
138 |
Guo S. ; Liang S. ; Zhang B. ; Fang G. ; Ma D. ; Zhou J. ACS Nano 2019, 13, 13456.
doi: 10.1021/acsnano.9b07042 |
139 |
Wang L. ; Cao X. ; Xu L. ; Chen J. ; Zheng J. ACS Sustain. Chem. Eng. 2018, 6, 16055.
doi: 10.1021/acssuschemeng.8b02502 |
140 |
Deng S. ; Luo M. ; Ai C. ; Zhang Y. ; Liu B. ; Huang L. ; Jiang Z. ; Zhang Q. ; Gu L. ; Lin S. ; et al Angew. Chem. Int. Edit. 2019, 58, 16289.
doi: 10.1002/anie.201909698 |
141 |
Zhai T. ; Wan L. ; Sun S. ; Chen Q. ; Sun J. ; Xia Q. ; Xia H. Adv. Mater. 2017, 29, 1604167.
doi: 10.1002/adma.201604167 |
[1] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[2] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[3] | Feng Wu, Qing Li, Lai Chen, Zirun Wang, Gang Chen, Liying Bao, Yun Lu, Shi Chen, Yuefeng Su. An Optimized Synthetic Process for the Substitution of Cobalt in Nickel-Rich Cathode Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007017-. |
[4] | Yuefeng Su, Qiyu Zhang, Lai Chen, Liying Bao, Yun Lu, Shi Chen, Feng Wu. Effects of ZrO2 Coating on Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathodes with Enhanced Cycle Stabilities [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005062-. |
[5] | Yongli Heng, Zhenyi Gu, Jinzhi Guo, Xinglong Wu. Research Progresses on Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005013-. |
[6] | Sidong Zhang, Yuan Liu, Muyao Qi, Anmin Cao. Localized Surface Doping for Improved Stability of High Energy Cathode Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011007-. |
[7] | Yaokun Ye, Zongxiang Hu, Jiahua Liu, Weicheng Lin, Taowen Chen, Jiaxin Zheng, Feng Pan. Research Progress of Theoretical Studies on Polarons in Cathode Materials of Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011003-. |
[8] | Yongli Tong, Meizhen Dai, Lei Xing, Hengqi Liu, Wanting Sun, Xiang Wu. Asymmetric Hybrid Capacitor Based on NiCo2O4 Nanosheets Electrode [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1903046-. |
[9] | Xinxin Cao,Jiang Zhou,Anqiang Pan,Shuquan Liang. Recent Advances in Phosphate Cathode Materials for Sodium-ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905018-. |
[10] | Zhenjie CHENG, Yayun MAO, Qingyu DONG, Feng JIN, Yanbin SHEN, Liwei CHEN. Fluoroethylene Carbonate as an Additive for Sodium-Ion Batteries: Effect on the Sodium Cathode [J]. Acta Physico-Chimica Sinica, 2019, 35(8): 868-875. |
[11] | Dong CHEN,Xinyang YUE,Xunlu LI,Xiaojing WU,Yongning ZHOU. Research Progress of Cathode Materials for Lithium-Selenium Batteries [J]. Acta Phys. -Chim. Sin., 2019, 35(7): 667-683. |
[12] | Jiangtao HU, Jiaxin ZHENG, Feng PAN. Research Progress into the Structure and Performance of LiFePO4 Cathode Materials [J]. Acta Physico-Chimica Sinica, 2019, 35(4): 361-370. |
[13] | Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597. |
[14] | Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613. |
[15] | Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196. |
|