Acta Phys. -Chim. Sin. ›› 2020, Vol. 36 ›› Issue (12): 2007004.doi: 10.3866/PKU.WHXB202007004
Special Issue: Neural Interfaces
• REVIEW • Previous Articles Next Articles
Zhanhong Du(), Yi Lu, Pengfei Wei, Chunshan Deng, Xiaojian Li(
)
Received:
2020-07-01
Accepted:
2020-08-11
Published:
2020-08-17
Contact:
Zhanhong Du,Xiaojian Li
E-mail:zh.du@siat.ac.cn;xj.li@siat.ac.cn
Supported by:
Zhanhong Du, Yi Lu, Pengfei Wei, Chunshan Deng, Xiaojian Li. Progress in Devices and Materials for Implantable Multielectrode Arrays[J]. Acta Phys. -Chim. Sin. 2020, 36(12), 2007004. doi: 10.3866/PKU.WHXB202007004
Fig 2
MEMS (Micro-Electro-Mechanical Systems) fabricated electrode arrays and devices. (A) High density grid ECoG recording electrode array 40c; (B) High-density polymer electrode array 48; (C) Recording setup of 1024 channel polymer array 48; (D) Microfluid and electrophysiology electrode array 55; (E) Neurotassl electrode array (PEG, Polyethylene glycol) 36; (F) Multi-functional fiber 54; (G) Neuropixel electrode array 28; (H) Ultraflexible high-density electrode array 33; (I) Cross-section of multi-functional fiber device (PC, Polycarbonate; COC, cyclic olefin copolymer; gCPE, graphite-conductive polyethylene) 54; (J) SEM(Scanning Electron Microscopy) of neuropixel electrode 28; (K) Transparent stretchable electrode array 43; (L) Retina implantable electrode array 44; (M) Neuron-like electrode array 34; (N) Stretchable electrode array 43. (A, B, C) Reprinted with permission from Elsevier. (D) Reprinted with permission from Royal Society of Chemistry. (E, L) Reprinted with permission from The American Association for the Advancement of Science. (F, G, I, J, M) Reprinted with permission from Springer Nature. (H) Reprinted with permission from John Wiley and Sons. (N, K) Reprinted with permission from American Chemical Society. "
Fig 3
Application of nanomaterial and nanodevices in neural recording and stimulation. (A) Membrane electrode with nanopillars 72; (B) SEM of nanopillar device 91; (C) Optical modulation of cellular activity with SiNW (silicon nanowire) 74; (D) Optical modulation of neurons with silicon nanowire 75; (E) SEM of ultrasoft nanowire electrodes 49a; (F) Nanoparticle to enable infrared vision in mice (UCNP, Upconversion Nanoparticles) 80; (G) Interface of ultrasoft electrode with cardiomyocytes 49a; (H) Subcellular interface nanopillar device 85; (I) Nanowire arrays to restore vision in blind mice 80. (A, C, H) Reprinted with permission from American Chemical Society. (B, D, (E), G, I) Reprinted with permission from Springer Nature. (F) Reprinted with permission from Elsevier. "
Fig 4
Wireless neural interface devices. (A) Nano-transistor device for wireless energy harvest 81; (B) Neural dust wireless device 82; (C) FET (Field Effect Transistor) device with Bacteriorhodopsin 83; (D) Neural dust device system 82; (E) Fully resorbable stimulation device 69; (F) Optogenetics device 84; (G) SEM of wireless optogenetics device (μ-ILEDs microscale, Inorganic Light-Emitting Diodes) 84. (A, E) Reprinted with permission from Springer Nature. (B, D) Reprinted with permission from Elsevier. (C) Reprinted with permission from John Wiley and Sons. (F, G) Reprinted with permission from The American Association for the Advancement of Science. "
1 | Galvani, L. Bon. Sci. Art. Inst. Acad. Comm., Ex Typographia Instituti Scientiarium: Bononiae, 1791; 7, pp. 363-418. doi: 10.1001/jama.1953.02940270095033 |
2 |
Yawn R. ; Hunter J. B. ; Sweeney A. D. ; Bennett M. L. F1000Prime Rep. 2015, 7, 45.
doi: 10.12703/P7-45 |
3 |
McIntyre C. C. ; Chaturvedi A. ; Shamir R. R. ; Lempka S. F. Brain Stimul. 2015, 8 (1), 21.
doi: 10.1016/j.brs.2014.07.039 |
4 |
Mills J. O. ; Jalil A. ; Stanga P. E. Eye (Lond) 2017, 31 (10), 1383.
doi: 10.1038/eye.2017.65 |
5 | (a) Downey, J. E.; Schwed, N.; Chase, S. M.; Schwartz, A. B.; Collinger, J. L. J. Neural Eng. 2018, 15 (4), 046016. doi: 10.1088/1741-2552/aab7a0 |
(b)Collinger,J.L.;Wodlinger,B.;Downey,J.E.;Wang,W.;Tyler-Kabara,E.C.;Weber,D.J.;McMorland,A.J.;Velliste,M.;Boninger,M.L.;Schwartz,A.B.Lancet2013,381(9866),557.doi:10.1016/S0140-6736(12)61816-9 | |
6 |
Roy D. S. ; Arons A. ; Mitchell T. I. ; Pignatelli M. ; Ryan T. J. ; Tonegawa S. Nature 2016, 531 (7595), 508.
doi: 10.1038/nature17172 |
7 |
Jorgenson L. A. ; Newsome W. ; Anderson D. J. ; Bargmann C. I. ; Brown E. N. ; Deisseroth K. ; Donoghue J. P. ; Hudson K. L. ; Ling G. S. F. ; et al Philos. Trans. R. Soc. B-Biol. Sci. 2015, 370 (1668), 20140164.
doi: 10.1098/rstb.2014.0164 |
8 |
Reardon S. Nature 2016, 537 (7622), 597.
doi: 10.1038/nature.2016.20658 |
9 |
Musk E. J. Med. Internet. Res. 2019, 21 (10), e16194.
doi: 10.2196/16194 |
10 |
Buzsáki G. ; Anastassiou C. A. ; Koch C. Nat. Rev. Neurosci. 2012, 13 (6), 407.
doi: 10.1038/nrn3241 |
11 |
Buzsáki G. Neuron 2002, 33 (3), 325.
doi: 10.1016/S0896-6273(02)00586-X |
12 | (a) Yuste, R. Nat. Rev. Neurosci. 2015, 16 (8), 487. doi: 10.1038/nrn3962 |
(b)Harris,K.D.;Quiroga,R.Q.;Freeman,J.;Smith,S.L.Nat.Neurosci.2016,19(9),1165.doi:10.1038/nn.4365 | |
13 | (a) Carter, M.; Shieh, J. Guide to Research Techniques in Neuroscience, 2nd ed.; Academic Press, 2015; pp. 39-71. doi: 10.1016/C2009-0-01891-1 |
(b)Buzsáki,G.Nat.Neurosci.2004,7(5),446.doi:10.1038/nn1233 | |
14 |
Rossant C. ; Kadir S. N. ; Goodman D. F. M. ; Schulman J. ; Hunter M. L. D. ; Saleem A. B. ; Grosmark A. ; Belluscio M. ; Denfield G. H. ; Ecker A. S. ; et al Nat. Neurosci. 2016, 19 (4), 634.
doi: 10.1038/nn.4268 |
15 | (a) Logothetis, N. K.; Pauls, J.; Augath, M.; Trinath, T.; Oeltermann, A. Nature 2001, 412 (6843), 150. doi: 10.1038/35084005 |
(b) Keller, C. J.; Chen, C.; Lado, F. A.; Khodakhah, K. PLoS ONE 2016, 11 (4), e0153154. doi:10.1371/journal.pone.0153154 | |
(c) Ponce, C. R.; Lomber, S. G.; Livingstone, M. S. J. Neurosci. 2017, 37 (19), 5019. doi:10.1523/JNEUROSCI.2674-16.2017 | |
16 |
Harris K. D. ; Henze D. A. ; Csicsvari J. ; Hirase H. ; Buzsáki G. J. Neurophys. 2000, 84 (1), 401.
doi: 10.1152/jn.2000.84.1.401 |
17 |
Hodgkin A. L. ; Huxley A. F. Nature 1939, 144 (3651), 710.
doi: 10.1038/144710a0 |
18 |
Hubel D. H. Science 1957, 125 (3247), 549.
doi: 10.1126/science.125.3247.549 |
19 |
Hubel D. H. ; Wiesel T. N. J. Physiol. (Lond.) 1962, 160 (1), 106.
doi: 10.1113/jphysiol.1962.sp006837 |
20 |
McNaughton B. L. ; O'Keefe J. ; Barnes C. A. J. Neurosci. Methods 1983, 8 (4), 391.
doi: 10.1016/0165-0270(83)90097-3 |
21 |
Wise K. D. ; Angell J. B. ; Starr A. IEEE Trans Biomed Eng. 1970, BME-17 (3), 238.
doi: 10.1109/TBME.1970.4502738 |
22 | Campbell P. K. ; Jones K. E. ; Normann R. A. Biomed. Sci. Instrum. 1990, 26, 161. |
23 | (a) Liu, J.; Fu, T. M.; Cheng, Z.; Hong, G.; Zhou, T.; Jin, L.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C.; et al. Nat. Nanotechnol. 2015, 10 (7), 629. doi: 10.1038/nnano.2015.115 |
(b) Hong, G.; Viveros, R. D.; Zwang, T. J.; Yang, X.; Lieber, C. M. Biochemistry 2018, 57 (27), 3995. doi:10.1021/acs.biochem.8b00122 | |
24 | (a) Cohen-Karni, T.; Casanova, D.; Cahoon, J. F.; Qing, Q.; Bell, D. C.; Lieber, C. M. Nano Lett. 2012, 12 (5), 2639. doi: 10.1021/nl3011337 |
(b) Scholvin, J.; Kinney, J. P.; Bernstein, J. G.; Moore-Kochlacs, C.; Kopell, N.; Fonstad, C. G.; Boyden, E. S. IEEE Trans. Biomed. Eng. 2016, 63 (1), 120.doi:10.1109/TBME.2015.2406113 | |
(c) Qing, Q.; Pal, S. K.; Tian, B.; Duan, X.; Timko, B. P.; Cohen-Karni, T.; Murthy, V. N.; Lieber, C. M. Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (5), 1882. doi:10.1073/pnas.0914737107 | |
25 | (a) Hubel, D. H.; Wiesel, T. N. J. Physiol. (Lond.) 1959, 148 (3), 574. doi:10.1113/jphysiol.1959.sp006308 |
(b) O'Keefe, J.; Dostrovsky, J. Brain Res. 1971, 34 (1), 171. doi:10.1016/0006-8993(71)90358-1 | |
(c) Desimone, R.; Albright, T. D.; Gross, C. G.; Bruce, C. J. Neurosci. 1984, 4 (8), 2051. doi:10.1523/JNEUROSCI.04-08-02051.1984 | |
(d) Schultz, W. J. Neurophysiol. 1986, 56 (5), 1439. doi:10.1152/jn.1986.56.5.1439 | |
(e) Newsome, W. T.; Britten, K. H.; Movshon, J. A. Nature 1989, 341 (6237), 52. doi:10.1038/341052a0 | |
(f) Hafting, T.; Fyhn, M.; Molden, S.; Moser, M. B.; Moser, E. I. Nature 2005, 436 (7052), 801. doi:10.1038/nature03721 | |
(g) Quiroga, R. Q.; Reddy, L.; Kreiman, G.; Koch, C.; Fried, I. Nature 2005, 435 (7045), 1102. doi:10.1038/nature03687 | |
(h) Hochberg, L. R.; Serruya, M. D.; Friehs, G. M.; Mukand, J. A.; Saleh, M.; Caplan, A. H.; Branner, A.; Chen, D.; Penn, R. D.; Donoghue, J. P. Nature 2006, 442 (7099), 164. doi:10.1038/nature04970 | |
26 | (a) Lin, M. Z.; Schnitzer, M. J. Nat. Neurosci. 2016, 19 (9), 1142. doi:10.1038/nn.4359 |
(b) Poldrack, R. A.; Farah, M. J. Nature 2015, 526 (7573), 371. doi:10.1038/nature15692 | |
27 |
Hong G. ; Lieber C. M. Nat. Rev. Neurosci. 2019, 20 (6), 330.
doi: 10.1038/s41583-019-0140-6 |
28 |
Jun J. J. ; Steinmetz N. A. ; Siegle J. H. ; Denman D. J. ; Bauza M. ; Barbarits B. ; Lee A. K. ; Anastassiou C. A. ; Andrei A. ; Aydin C. ; et al Nature 2017, 551 (7679), 232.
doi: 10.1038/nature24636 |
29 |
Raducanu B. C. ; Yazicioglu R. F. ; Lopez C. M. ; Ballini M. ; Putzeys J. ; Wang S. ; Andrei A. ; Rochus V. ; Welkenhuysen M. ; van Helleputte N. ; et al Sensors (Basel) 2017, 17 (10), 2388.
doi: 10.3390/s17102388 |
30 |
Rios G. ; Lubenov E. V. ; Chi D. ; Roukes M. L. ; Siapas A. G. Nano Lett. 2016, 16 (11), 6857.
doi: 10.1021/acs.nanolett.6b02673 |
31 |
Stringer C. ; Pachitariu M. ; Steinmetz N. ; Reddy C. B. ; Carandini M. ; Harris K. D. Science 2019, 364 (6437), 255.
doi: 10.1126/science.aav7893 |
32 | (a) Xie, C.; Liu, J.; Fu, T. M.; Dai, X.; Zhou, W.; Lieber, C. M. Nat. Mater. 2015, 14 (12), 1286. doi:10.1038/nmat4427 |
(b) Saxena, T.; Bellamkonda, R. V. Nat. Mater. 2015, 14 (12), 1190. doi:10.1038/nmat4454 | |
33 |
Wei X. ; Luan L. ; Zhao Z. ; Li X. ; Zhu H. ; Potnis O. ; Xie C. Adv. Sci. 2018, 5 (6), 1700625.
doi: 10.1002/advs.201700625 |
34 |
Yang X. ; Zhou T. ; Zwang T. J. ; Hong G. ; Zhao Y. ; Viveros R. D. ; Fu T. M. ; Gao T. ; Lieber C. M. Nat. Mater. 2019, 18 (5), 510.
doi: 10.1038/s41563-019-0292-9 |
35 |
Schuhmann T. G. ; Yao J. ; Hong G. ; Fu T. M. ; Lieber C. M. Nano Lett. 2017, 17 (9), 5836.
doi: 10.1021/acs.nanolett.7b03081 |
36 |
Guan S. ; Wang J. ; Gu X. ; Zhao Y. ; Hou R. ; Fan H. ; Zou L. ; Gao L. ; Du M. ; Li C. ; Fang Y. Sci. Adv. 2019, 5 (3), eaav2842.
doi: 10.1126/sciadv.aav2842 |
37 |
Du Z. J. ; Kolarcik C. L. ; Kozai T. D. Y. ; Luebben S. D. ; Sapp S. A. ; Zheng X. S. ; Nabity J. A. ; Cui X. T. Acta Biomater. 2017, 53, 46.
doi: 10.1016/j.actbio.2017.02.010 |
38 | (a) Fu, T. M.; Hong, G.; Zhou, T.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Nat. Methods 2016, 13 (10), 875. doi:10.1038/nmeth.3969 |
(b) Zhou, T.; Hong, G.; Fu, T. M.; Yang, X.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (23), 5894. doi:10.1073/pnas.1705509114 | |
39 |
Steinmetz N. A. ; Koch C. ; Harris K. D. ; Carandini M. Curr. Opin. Neurobiol. 2018, 50, 92.
doi: 10.1016/j.conb.2018.01.009 |
40 | (a) Salatino, J. W.; Ludwig, K. A.; Kozai, T. D. Y.; Purcell, E. K. Nat. Biomed. Eng. 2017, 1 (11), 862. doi:10.1038/s41551-017-0154-1 |
(b) Feiner, R.; Dvir, T. Nat. Rev. Mater. 2017, 3. doi:10.1038/natrevmats.2017.76 | |
(c) Ritaccio, A.; Brunner, P.; Cervenka, M. C.; Crone, N.; Guger, C.; Leuthardt, E.; Oostenveld, R.; Stacey, W.; Schalk, G. Epilepsy Behav. 2010, 19 (3), 204. doi:10.1016/j.yebeh.2010.08.028 | |
41 |
Viventi J. ; Kim D. H. ; Vigeland L. ; Frechette E. S. ; Blanco J. A. ; Kim Y. S. ; Avrin A. E. ; Tiruvadi V. R. ; Hwang S. W. ; Vanleer A. C. ; et al Nat. Neurosci. 2011, 14 (12), 1599.
doi: 10.1038/nn.2973 |
42 |
Khodagholy D. ; Gelinas J. N. ; Thesen T. ; Doyle W. ; Devinsky O. ; Malliaras G. G. ; Buzsáki G. Nat. Neurosci. 2015, 18 (2), 310.
doi: 10.1038/nn.3905 |
43 |
Zhang J. ; Liu X. ; Xu W. ; Luo W. ; Li M. ; Chu F. ; Xu L. ; Cao A. ; Guan J. ; Tang S. ; Duan X. Nano Lett. 2018, 18 (5), 2903.
doi: 10.1021/acs.nanolett.8b00087 |
44 |
Hong G. ; Fu T. M. ; Qiao M. ; Viveros R. D. ; Yang X. ; Zhou T. ; Lee J. M. ; Park H. G. ; Sanes J. R. ; Lieber C. M. Science 2018, 360 (6396), 1447.
doi: 10.1126/science.aas9160 |
45 |
Khodagholy D. ; Gelinas J. N. ; Buzsáki G. Science 2017, 358 (6361), 369.
doi: 10.1126/science.aan6203 |
46 |
Avena-Koenigsberger A. ; Misic B. ; Sporns O. Nat. Rev. Neurosci. 2018, 19 (1), 17.
doi: 10.1038/nrn.2017.149 |
47 |
Frankland P. W. ; Bontempi B. Nat. Rev. Neurosci. 2005, 6 (2), 119.
doi: 10.1038/nrn1607 |
48 |
Chung J. E. ; Joo H. R. ; Fan J. L. ; Liu D. F. ; Barnett A. H. ; Chen S. ; Geaghan-Breiner C. ; Karlsson M. P. ; Karlsson M. ; Lee K. Y. ; et al Neuron 2019, 101 (1), 21.
doi: 10.1016/j.neuron.2018.11.002 |
49 | (a) Lee, S.; Sasaki, D.; Kim, D.; Mori, M.; Yokota, T.; Lee, H.; Park, S.; Fukuda, K.; Sekino, M.; Matsuura, K.; et al. Nat. Nanotechnol. 2019, 14 (2), 156. doi:10.1038/s41565-018-0331-8 |
(b) Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A.; et al. Nat. Nanotechnol. 2017, 12 (9), 907. doi:10.1038/nnano.2017.125 | |
50 |
Kozai T. D. Y. ; Catt K. ; Du Z. ; Na K. ; Srivannavit O. ; Haque R. U. M. ; Seymour J. ; Wise K. D. ; Yoon E. ; Cui X. T. IEEE Trans. Biomed. Eng. 2016, 63 (1), 111.
doi: 10.1109/TBME.2015.2445713 |
51 |
Du Z. J. ; Luo X. ; Weaver C. L. ; Cui X. T. J. Mater. Chem.C 2015, 3 (25), 6515.
doi: 10.1039/C5TC00145E |
52 |
Du Z. J. ; Bi G. Q. ; Cui X. T. Adv. Funct. Mater. 2017, 28 (12), 1703988.
doi: 10.1002/adfm.201703988 |
53 |
Taylor I. ; Du Z. J. ; Bigelow E. ; Eles J. ; Horner A. R. ; Catt K. A. ; Weber S. ; Jamieson B. ; Cui X. T. J. Mater. Chem. B 2017, 5 (13), 2445.
doi: 10.1039/C7TB00095B |
54 |
Park S. ; Guo Y. ; Jia X. ; Choe H. K. ; Grena B. ; Kang J. ; Park J. ; Lu C. ; Canales A. ; Chen R. ; et al Nat. Neurosci. 2017, 20 (4), 612.
doi: 10.1038/nn.4510 |
55 |
Lee H. J. ; Son Y. ; Kim J. ; Lee C. J. ; Yoon E. S. ; Cho I. J. Lab Chip 2015, 15 (6), 1590.
doi: 10.1039/c4lc01321b |
56 |
Jiang Y. ; Tian B. Nat. Rev. Mater. 2018, 3 (12), 473.
doi: 10.1038/s41578-018-0062-3 |
57 |
Fu T. M. ; Duan X. ; Jiang Z. ; Dai X. ; Xie P. ; Cheng Z. ; Lieber C. M. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (4), 1259.
doi: 10.1073/pnas.1323389111 |
58 |
Mirza M. M. ; Schupp F. J. ; Mol J. A. ; MacLaren D. A. ; Briggs G. A. D. ; Paul D. J. Sci. Rep. 2017, 7
doi: 10.1038/s41598-017-03138-5 |
59 |
Tian B. ; Cohen-Karni T. ; Qing Q. ; Duan X. ; Xie P. ; Lieber C. M. Science 2010, 329 (5993), 830.
doi: 10.1126/science.1192033 |
60 |
Zhao Y. ; Yao J. ; Xu L. ; Mankin M. N. ; Zhu Y. ; Wu H. ; Mai L. ; Zhang Q. ; Lieber C. M. Nano Lett. 2016, 16 (4), 2644.
doi: 10.1021/acs.nanolett.6b00292 |
61 |
Duan X. ; Gao R. ; Xie P. ; Cohen-Karni T. ; Qing Q. ; Choe H. S. ; Tian B. ; Jiang X. ; Lieber C. M. Nat. Nanotechnol. 2012, 7 (3), 174.
doi: 10.1038/nnano.2011.223 |
62 |
Gao R. ; Strehle S. ; Tian B. ; Cohen-Karni T. ; Xie P. ; Duan X. ; Qing Q. ; Lieber C. M. Nano Lett. 2012, 12 (6), 3329.
doi: 10.1021/nl301623p |
63 |
Kang S. K. ; Murphy R. K. J. ; Hwang S. W. ; Lee S. M. ; Harburg D. V. ; Krueger N. A. ; Shin J. ; Gamble P. ; Cheng H. ; Yu S. ; et al Nature 2016, 530 (7588), 71.
doi: 10.1038/nature16492 |
64 |
Jiang Y. ; Carvalho-de-Souza J. L. ; Wong R. C. S. ; Luo Z. ; Isheim D. ; Zuo X. ; Nicholls A. W. ; Jung I. W. ; Yue J. ; Liu D. J. ; et al Nat. Mater. 2016, 15 (9), 1023.
doi: 10.1038/nmat4673 |
65 | (a) Park, D. W.; Schendel, A. A.; Mikael, S.; Brodnick, S. K.; Richner, T. J.; Ness, J. P.; Hayat, M. R.; Atry, F.; Frye, S. T.; Pashaie, R.; et al. Nat. Commun. 2014, 5. doi:10.1038/ncomms6258 |
(b) Kuzum, D.; Takano, H.; Shim, E.; Reed, J. C.; Juul, H.; Richardson, A. G.; de Vries, J.; Bink, H.; Dichter, M. A.; Lucas, T. H.; et al. Nat. Commun. 2014, 5. doi:10.1038/ncomms6259 | |
66 |
Tian B. ; Liu J. ; Dvir T. ; Jin L. ; Tsui J. H. ; Qing Q. ; Suo Z. ; Langer R. ; Kohane D. S. ; Lieber C. M. Nat. Mater. 2012, 11 (11), 986.
doi: 10.1038/nmat3404 |
67 |
Xu J. ; Wang S. ; Wang G. J. N. ; Zhu C. ; Luo S. ; Jin L. ; Gu X. ; Chen S. ; Feig V. R. ; To J. W. F. ; et al Science 2017, 355 (6320), 59.
doi: 10.1126/science.aah4496 |
68 |
Fu T. M. ; Hong G. ; Viveros R. D. ; Zhou T. ; Lieber C. M. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (47), E10046.
doi: 10.1073/pnas.1717695114 |
69 |
Koo J. ; MacEwan M. R. ; Kang S. K. ; Won S. M. ; Stephen M. ; Gamble P. ; Xie Z. ; Yan Y. ; Chen Y. Y. ; Shin J. ; et al Nat. Med. 2018, 24 (12), 1830.
doi: 10.1038/s41591-018-0196-2 |
70 |
Garcia-Lopez V. ; Chen F. ; Nilewski L. G. ; Duret G. ; Aliyan A. ; Kolomeisky A. B. ; Robinson J. T. ; Wang G. ; Pal R. ; Tour J. M. Nature 2017, 548 (7669), 567.
doi: 10.1038/nature23657 |
71 |
Xu T. ; Gao W. ; Xu L. P. ; Zhang X. ; Wang S. Adv. Mater. 2017, 29 (9), 1603250.
doi: 10.1002/adma.201603250 |
72 |
Dipalo M. ; Amin H. ; Lovato L. ; Moia F. ; Caprettini V. ; Messina G. C. ; Tantussi F. ; Berdondini L. ; De Angelis F. Nano Lett. 2017, 17 (6), 3932.
doi: 10.1021/acs.nanolett.7b01523 |
73 |
Dipalo M. ; Melle G. ; Lovato L. ; Jacassi A. ; Santoro F. ; Caprettini V. ; Schirato A. ; Alabastri A. ; Garoli D. ; Bruno G. ; et al Nat. Nanotechnol. 2018, 13 (10), 965.
doi: 10.1038/s41565-018-0222-z |
74 |
Parameswaran R. ; Koehler K. ; Rotenberg M. Y. ; Burke M. J. ; Kim J. ; Jeong K. Y. ; Hissa B. ; Paul M. D. ; Moreno K. ; Sarma N. ; et al Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (2), 413.
doi: 10.1073/pnas.1816428115 |
75 |
Fang Y. ; Jiang Y. ; Ledesrna H. A. ; Yi J. ; Gao X. ; Weiss D. E. ; Shi F. ; Tian B. Nano Lett. 2018, 18 (7), 4487.
doi: 10.1021/acs.nanolett.8b01626 |
76 | (a) Hai, A.; Shappir, J.; Spira, M. E. Nat. Methods 2010, 7 (3), 200. doi:10.1038/nmeth.1420 |
(b) Hai, A.; Spira, M. E. Lab Chip 2012, 12 (16), 2865. doi:10.1039/c2lc40091j | |
77 |
Xie C. ; Lin Z. ; Hanson L. ; Cui Y. ; Cui B. Nat. Nanotechnol. 2012, 7 (3), 185.
doi: 10.1038/nnano.2012.8 |
78 |
Lin Z. C. ; Xie C. ; Osakada Y. ; Cui Y. ; Cui B. Nat. Commun.. 2014, 5
doi: 10.1038/ncomms4206 |
79 |
Robinson J. T. ; Jorgolli M. ; Shalek A. K. ; Yoon M. H. ; Gertner R. S. ; Park H. Nat. Nanotechnol. 2012, 7 (3), 180.
doi: 10.1038/nnano.2011.249 |
80 | a) Ma, Y.; Bao, J.; Zhang, Y.; Li, Z.; Zhou, X.; Wan, C.; Huang, L.; Zhao, Y.; Han, G.; Xue, T. Cell 2019, 177 (2), 243. doi:10.1016/j.cell.2019.01.038 |
(b) Tang, J.; Qin, N.; Chong, Y.; Diao, Y.; Yiliguma; Wang, Z.; Xue, T.; Jiang, M.; Zhang, J.; Zheng, G. Nat. Commun..2018, 9. doi:10.1038/s41467-018-03212-0 | |
81 |
Zhang X. ; Grajal J. ; Luis Vazquez-Roy J. ; Radhakrishna U. ; Wang X. ; Chern W. ; Zhou L. ; Lin Y. ; Shen P. C. ; Ji X. ; et al Nature 2019, 566 (7744), 368.
doi: 10.1038/s41586-019-0892-1 |
82 |
Seo D. ; Neely R. M. ; Shen K. ; Singhal U. ; Alon E. ; Rabaey J. M. ; Carmena J. M. ; Maharbiz M. M. Neuron 2016, 91 (3), 529.
doi: 10.1016/j.neuron.2016.06.034 |
83 |
Tunuguntla R. H. ; Bangar M. A. ; Kim K. ; Stroeve P. ; Grigoropoulos C. ; Ajo-Franklin C. M. ; Noy A. Adv. Mater. 2015, 27 (5), 831.
doi: 10.1002/adma.201403988 |
84 |
Kim T. I. ; McCall J. G. ; Jung Y. H. ; Huang X. ; Siuda E. R. ; Li Y. ; Song J. ; Song Y. M. ; Pao H. A. ; Kim R. H. ; et al Science 2013, 340 (6129), 211.
doi: 10.1126/science.1232437 |
85 |
Santoro F. ; Zhao W. ; Joubert L. M. ; Duan L. ; Schnitker J. ; van de Burgt Y. ; Lou H. Y. ; Liu B. ; Salleo A. ; Cui L. ; et al ACS nano 2017, 11 (8), 8320.
doi: 10.1021/acsnano.7b03494 |
86 |
Luan L. ; Wei X. ; Zhao Z. ; Siegel J. J. ; Potnis O. ; Tuppen C. A. ; Lin S. ; Kazmi S. ; Fowler R. A. ; Holloway S. ; et al Sci. Adv. 2017, 3 (2), e1601966.
doi: 10.1126/sciadv.1601966 |
87 |
Gonzales D. L. ; Badhiwala K. N. ; Vercosa D. G. ; Avants B. W. ; Liu Z. ; Zhong W. ; Robinson J. T. Nat. Nanotechnol. 2017, 12 (7), 684.
doi: 10.1038/nnano.2017.55 |
88 | (a) Marshall, J. D.; Schnitzer, M. J. ACS Nano 2013, 7 (5), 4601. doi:10.1021/nn401410k |
(b) Peterka, D. S.; Takahashi, H.; Yuste, R. Neuron 2011, 69 (1), 9. doi:10.1016/j.neuron.2010.12.010 | |
89 |
Efros A. L. ; Delehanty J. B. ; Huston A. L. ; Medintz I. L. ; Barbic M. ; Harris T. D. Nat. Nanotechnol. 2018, 13 (4), 278.
doi: 10.1038/s41565-018-0107-1 |
90 |
Bonnaud C. ; Monnier C. A. ; Demurtas D. ; Jud C. ; Vanhecke D. ; Montet X. ; Hovius R. ; Lattuada M. ; Rothen-Rutishauser B. ; Petri-Fink A. ACS nano 2014, 8 (4), 3451.
doi: 10.1021/nn406349z |
91 | (a) Zhao, W.; Hanson, L.; Lou, H. Y.; Akamatsu, M.; Chowdary, P. D.; Santoro, F.; Marks, J. R.; Grassart, A.; Drubin, D. G.; Cui, Y.; et al. Nat. Nanotechnol. 2017, 12 (8), 750. doi:10.1038/nnano.2017.98 |
(b) Zimmerman, J. F.; Parameswaran, R.; Murray, G.; Wang, Y.; Burke, M.; Tian, B. Science Advances 2016, 2 (12). doi:10.1126/sciadv.1601039 | |
92 |
Haziza S. ; Mohan N. ; Loe-Mie Y. ; Lepagnol-Bestel A. M. ; Massou S. ; Adam M. P. ; Le X. L. ; Viard J. ; Plancon C. ; Daudin R. ; Koebel P. ; Dorard E. ; Rose C. ; Hsieh F. J. ; Wu C. C. ; Potier B. ; Herault Y. ; Sala C. ; Corvin A. ; Allinquant B. ; Chang H. C. ; Treussart F. ; Simonneau M. Nat. Nanotechnol. 2017, 12 (4), 322.
doi: 10.1038/nnano.2016.260 |
93 | (a) Gu, Y.; Sun, W.; Wang, G.; Jeftinija, K.; Jeftinija, S.; Fang, N. Nat Commun 2012, 3. doi:10.1038/ncomms2037 |
(b) Kaplan, L.; Ierokomos, A.; Chowdary, P.; Bryant, Z.; Cui, B. Sci. Adv. 2018, 4 (3), e1602170. doi:10.1126/sciadv.1602170 | |
94 |
Berna J. ; Leigh D. A. ; Lubomska M. ; Mendoza S. M. ; Perez E. M. ; Rudolf P. ; Teobaldi G. ; Zerbetto F. Nat. Mater. 2005, 4 (9), 704.
doi: 10.1038/nmat1455 |
95 |
Jiang Y. ; Li X. ; Liu B. ; Yi J. ; Fang Y. ; Shi F. ; Gao X. ; Sudzilovsky E. ; Parameswaran R. ; Koehler K. ; et al Nat. Biomed. Eng. 2018, 2 (7), 508.
doi: 10.1038/s41551-018-0230-1 |
96 |
Johannsmeier S. ; Heeger P. ; Terakawa M. ; Kalies S. ; Heisterkamp A. ; Ripken T. ; Heinemann D. Sci. Rep. 2018, 8
doi: 10.1038/s41598-018-24908-9 |
97 |
Veetil A. T. ; Chakraborty K. ; Xiao K. ; Minter M. R. ; Sisodia S. S. ; Krishnan Y. Nat. Nanotechnol. 2017, 12 (12), 1183.
doi: 10.1038/nnano.2017.159 |
98 |
Narayanaswamy N. ; Chakraborty K. ; Saminathan A. ; Zeichner E. ; Leung K. ; Devany J. ; Krishnan Y. Nat. Methods 2019, 16 (1), 95.
doi: 10.1038/s41592-018-0232-7 |
99 | (a) Saha, S.; Prakash, V.; Halder, S.; Chakraborty, K.; Krishnan, Y. Nat. Nanotechnol. 2015, 10 (7), 645. doi:10.1038/nnano.2015.130 |
(b) Prakash, V.; Saha, S.; Chakraborty, K.; Krishnan, Y. Chem. Sci. 2016, 7 (3), 1946. doi:10.1039/c5sc04002g | |
(c) Leung, K.; Chakraborty, K.; Saminathan, A.; Krishnan, Y. Nat. Nanotechnol. 2019, 14 (2), 176. doi:10.1038/s41565-018-0318-5 |
[1] | Xiaoyu Wang, Yang Cheng, Guodong Xue, Ziqi Zhou, Mengze Zhao, Chaojie Ma, Jin Xie, Guangjie Yao, Hao Hong, Xu Zhou, Kaihui Liu, Zhongfan Liu. Giant Enhancement of Optical Second Harmonic Generation in Hollow-Core Fiber Integrated with GaSe Nanoflakes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212028-0. |
[2] | Jie Wang, Guigao Liu, Qinbai Yun, Xichen Zhou, Xiaozhi Liu, Ye Chen, Hongfei Cheng, Yiyao Ge, Jingtao Huang, Zhaoning Hu, Bo Chen, Zhanxi Fan, Lin Gu, Hua Zhang. Epitaxial Growth of Unconventional 4H-Pd Based Alloy Nanostructures on 4H-Au Nanoribbons towards Highly Efficient Electrocatalytic Methanol Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2305034-. |
[3] | Changxiang Shao, Liangti Qu. Progress on Power Generation from Gas-Liquid Phase Transformation of Water [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306004-. |
[4] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[5] | Cheng Chang, Wei Chen, Ye Chen, Yonghua Chen, Yu Chen, Feng Ding, Chunhai Fan, Hong Jin Fan, Zhanxi Fan, Cheng Gong, Yongji Gong, Qiyuan He, Xun Hong, Sheng Hu, Weida Hu, Wei Huang, Yuan Huang, Wei Ji, Dehui Li, Lain-Jong Li, Qiang Li, Li Lin, Chongyi Ling, Minghua Liu, Nan Liu, Zhuang Liu, Kian Ping Loh, Jianmin Ma, Feng Miao, Hailin Peng, Mingfei Shao, Li Song, Shao Su, Shuo Sun, Chaoliang Tan, Zhiyong Tang, Dingsheng Wang, Huan Wang, Jinlan Wang, Xin Wang, Xinran Wang, Andrew T. S. Wee, Zhongming Wei, Yuen Wu, Zhong-Shuai Wu, Jie Xiong, Qihua Xiong, Weigao Xu, Peng Yin, Haibo Zeng, Zhiyuan Zeng, Tianyou Zhai, Han Zhang, Hui Zhang, Qichun Zhang, Tierui Zhang, Xiang Zhang, Li-Dong Zhao, Meiting Zhao, Weijie Zhao, Yunxuan Zhao, Kai-Ge Zhou, Xing Zhou, Yu Zhou, Hongwei Zhu, Hua Zhang, Zhongfan Liu. Recent Progress on Two-Dimensional Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2108017-. |
[6] | Ning Feng, Hongguang Li, Jingcheng Hao. Toward the Neutralization of Carbon Dots Prepared by Mixed Acid Reflux [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2005004-. |
[7] | Yuan Zhou, Na Han, Yanguang Li. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 2001041-. |
[8] | Chao Zhang, Sihan Li, Chenliang Wu, Xiaoqing Li, Xinhuan Yan. Preparation and Characterization of Pt@Au/Al2O3 Core-Shell Nanoparticles for Toluene Oxidation Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(8): 1907057-. |
[9] | Dongmei Liu,Xiumei Chen,Ze Yuan,Min Lu,Lisha Yin,Xiaoji Xie,Ling Huang. Coating and Transforming the Y(OH)CO3 Shell on Upconversion Nanoparticles [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1907011-. |
[10] | Jing Miao,Ruifeng Guo,Zhihong Liu. Preparation of BaO·4B2O3·5H2O Nanomaterial and Evaluation of Its Flame Retardant Performance to PP by Thermal Decomposition Kinetics Method [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1905052-. |
[11] | Ruolan Zhang,Chao Wang,Hao Chen,Heng Zhao,Jing Liu,Yu Li,Baolian Su. Cadmium Sulfide Inverse Opal for Photocatalytic Hydrogen Production [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1803014-. |
[12] | Yi Wang,Wangchen Huo,Xiaoya Yuan,Yuxin Zhang. Composite of Manganese Dioxide and Two-dimensional Materials Applied to Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904007-. |
[13] | Qingqing WANG, Jinling WANG, Shengxiang JIANG, Pingyun LI. Recent Progress in Sol-Gel Method for Designing and Preparing Metallic and Alloy Nanocrystals [J]. Acta Physico-Chimica Sinica, 2019, 35(11): 1186-1206. |
[14] | Huarong BAI,Huanhuan FAN,Xiaobing ZHANG,Zhuo CHEN,Weihong TAN. Aptamer-Conjugated Nanomaterials for Specific Cancer Diagnosis and Targeted Therapy [J]. Acta Phys. -Chim. Sin., 2018, 34(4): 348-360. |
[15] | Teng LU,Yongxiang ZHOU,Hongxia GUO. Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study [J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1144-1150. |
|