物理化学学报 >> 2021, Vol. 37 >> Issue (5): 2008066.doi: 10.3866/PKU.WHXB202008066
所属专题: CO2还原
Dautzenberg Frits Mathias1,*(), 路勇2, 徐彬3
收稿日期:
2020-08-23
录用日期:
2020-09-18
发布日期:
2020-09-21
通讯作者:
Dautzenberg Frits Mathias
E-mail:fritsd@serenixcorp.com
Frits Mathias Dautzenberg1,*(), Yong Lu2, Bin Xu3
Received:
2020-08-23
Accepted:
2020-09-18
Published:
2020-09-21
Contact:
Frits Mathias Dautzenberg
E-mail:fritsd@serenixcorp.com
About author:
Frits Mathias Dautzenberg, Email: fritsd@serenixcorp.com摘要:
建立能可靠预测全球平均温度(Te)的方法,对于寻求政治和全球合作以及大量财政资源来推动CO2减排至关重要。基于可预见的若干年内CO2排放量不能显著降低这一假设,目前的气候模型似乎都预测Te将会持续上升。然而,将大气中的CO2作为多因素地球气候系统的唯一变量,来关联观察到的温度异常,很可能过于简单化了,因为大气中H2O的存在是至少应该要考虑的。受控于太阳活动的大气H2O含量是Te的首要决定因素,其次才是与人类活动相关的CO2排放,而CO2排放将来可能降低。基于地球平均温度观测值和热力学数据,建立了新的预测模型。应用该模型方程,可以分析过去、当前和未来大气中CO2和H2O含量并可计算出相应的Te。这是一个还未见公开报道的、更精确的模型。本模型预测,依据将较基准情景(business-as-usual,BAU),到2050年Te可能上升至15.5 ℃; 通过合理的绿色技术行动方案,Te可能降至约14.2 ℃,预测未来30年CO2可减排513千兆吨。绿色技术应用场景包括诸如各种CO2减排行动,碳捕获,矿化以及生物碳生产等,其中至2050年CO2减排的主要贡献将来自于电力、农业和运输行业。另外,也对更激进的Plausible和Drawdown方案进行了分析,预测未来30年CO2可分别减排1051和1747千兆吨,但这些方案可能会减少全球粮食生产。要强调的是,全球变暖的成因和预测应该视为开放的科学问题,因为涉及与全球变暖相关的物理过程的多个问题仍然无解。例如,太阳活动耦合米兰科维奇(Milankovitch)循环扮演的角色就没有完全理解。还有,海洋对CO2的吸收和火山活动等其他因素的影响,可能无法忽略。
Dautzenberg Frits Mathias, 路勇, 徐彬. 通过脱碳控制全球平均温度[J]. 物理化学学报, 2021, 37(5), 2008066. doi: 10.3866/PKU.WHXB202008066
Frits Mathias Dautzenberg, Yong Lu, Bin Xu. Controlling the Global Mean Temperature by Decarbonization[J]. Acta Phys. -Chim. Sin. 2021, 37(5), 2008066. doi: 10.3866/PKU.WHXB202008066
Table 1
Global temperature increase per year, including data from the National Aeronautics and Space Administration (NASA) and the Goddard Institute for Space Studies (GISS)."
Years | ΔT | ΔT/year | ΔT/100 year | |
Core Ice | 10000 | 11 | 0.0011 | 0.11 |
1600-2000 | 400 | 1.0 | 0.0025 | 0.25 |
1910-2020 | 110 | 1.4 | 0.0127 | 1.27 |
1980-2019 | 39 | 0.9 | 0.0231 | 2.31 |
Table 2
Thermodynamic calculations * of a coefficient."
T/℃ | T/K | ΔHf/(kJ·mol-1) | ΔHvap/(kJ·mol-1) | Cp/(kJ·mol-1·K-1) | a/℃/(10-6(v)) |
25.00 | 298.15 | -241.89 | 44.54 | 0.07537 | 2.6182 × 10-3 |
13.50 | 286.65 | -242.27 | 43.98 | 0.07560 | 2.6227 × 10-3 |
13.95 | 287.10 | -242.25 | 44.01 | 0.07559 | 2.6226 × 10-3 |
14.50 | 287.65 | -242.23 | 44.03 | 0.07558 | 2.6225 × 10-3 |
15.10 | 288.25 | -242.21 | 44.06 | 0.07556 | 2.6224 × 10-3 |
15.50 | 288.65 | -242.20 | 44.08 | 0.07555 | 2.6223 × 10-3 |
16.00 | 289.15 | -242.18 | 44.10 | 0.07554 | 2.6221 × 10-3 |
16.50 | 289.65 | -242.17 | 44.13 | 0.07553 | 2.6220 × 10-3 |
17.00 | 290.15 | -242.15 | 44.15 | 0.07552 | 2.6219 × 10-3 |
Table 3
Thermodynamic calculations * of b coefficient."
T/℃ | T/K | ΔHf/(kJ·mol-1) | Cp/(kJ·mol-1·K-1) | b/℃/(10-6(v)) |
13.50 | 286.65 | -393.95 | 37.40 | 1.0532 × 10-2 |
13.95 | 287.10 | -393.93 | 37.42 | 1.0526 × 10-2 |
14.50 | 287.65 | -393.91 | 37.45 | 1.0519 × 10-2 |
15.10 | 288.25 | -393.89 | 37.47 | 1.0511 × 10-2 |
15.50 | 288.65 | -393.88 | 37.49 | 1.0506 × 10-2 |
16.00 | 289.15 | -393.86 | 37.51 | 1.0499 × 10-2 |
16.50 | 289.65 | -393.84 | 37.53 | 1.0493 × 10-2 |
17.00 | 290.15 | -393.82 | 37.56 | 1.0486 × 10-2 |
1 | Hausfather, Z.; Drake, H. F.; Abott, T.; Schmidt, G. A. Geophys. Res. Lett. 2020, 47 (1), e2019GL085378. doi: 10.1029/2019GL085378 |
2 | Intergovernmental Panel on Climate Change (IPCC) Reports, 1990-2019. https://www.ipcc.ch (accessed on Sep. 18, 2020). |
3 | GISS Surface Temperature Analysis (GISTEMP v4), version 4, 2019. https://data.giss.nasa.gov/gistemp (accessed on Sep. 18 2020). |
4 | Buis, A. Study conforms climate models are getting future warming projections right. https://climate.nasa.gov/news/2943/study-confirms-climate-models-are-getting-future-warming-projections-right/ (accessed on Sep. 18 2020). |
5 | Moore, P. A. Confessions of a Greenpeace Dropout; Beatty Street Publishing Inc.: Vancouver, BC, Canada, 2013. |
6 | Spencer, R. W. The Greatest Global Warming Blunder: How Mother Nature Fooled the World's Top Climate Scientists; Encounter Books: New York, NY, USA, 2010. |
7 |
Petit J. R. ; Jouzel J. ; Raynaud D. ; Barkov N. I. ; Barnola J.-M. ; Basile I. ; Bender M. ; Chappellaz J. ; Davis M. ; Delaygue G. ; et al Nature 1999, 399 (6735), 429.
doi: 10.1038/20859 |
8 | Bohren, C. F.; Clothiaux, E. E. Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006. |
9 | www.geo.utexas.edu/courses/387H/Lectures/chap2.pdf (accessed on Sep. 18 2020). |
10 | https://www.nist.gov/publications/web-thermo-tables-line-version-trc-thermodynamics-table (accessed on Sep. 18, 2020). |
11 | Yaws, C. L. Chemical Properties Handbook; McGraw-Hill: New York, NY, USA, 1999; p. 291 and p. 310. |
12 |
Cox P. M. ; Huntingford C. ; Williamson M. S. Nature 2018, 533 (7688), 319.
doi: 10.1038/nature25450 |
13 | Deser, C. Making Sense of Climate Projections. Lecture at the University of Washington, Department of Atmospheric Sciences: Seattle, WA, USA, 2019. |
14 | http://www.scotese.com/earth.htm. (accessed on Sep. 18 2020) |
15 | Ruddiman, W. F. Earth's Climate: Past and Future, 3rd ed.; W.H. Freeman & Sons: New York, NY, USA, 2013. |
16 |
Pagani M. ; Zachos J. C. ; Freeman K. H. ; Tipple B. ; Bohaty S. Science 2005, 309 (5734), 600.
doi: 10.1126/science.1110063 |
17 | https://www.sciencemag.org/news/2019/05/500-million-year-survey-earths-climate-reveals-dire-warning-humanity (accessed on Sep. 18 2020). |
18 | Moore, P. A. Climate Realism. Presentation at the Climate Realism seminar, Toronto, Canada, October, 2019. |
19 | https://ourworldindata.org/CO2-and-other-greenhouse-gas-emissions (accessed on Sep. 18, 2020). |
20 |
Abbot J. ; Marohasy J. Geo. Res. J. 2017, 14, 36.
doi: 10.1016/j.grj.2017.08.001 |
21 | https://www.therightinsight.org/Patrick-Moore-Should-We-Celebrate-CO2 (accessed on Sep. 18, 2020). |
22 | Hawken, P. Drawdown-The Most Comprehensive Plan Ever Proposed to Reverse Global Warming; Penguin Books, New York, NY, USA, 2017. |
23 | Henson, R. The Thinking Person's Guide to Climate Change, 2nd ed.; The American Meteorological Society: Boston, MA, USA, 2019. |
24 | Vertes, A.; Qureshi, N.; Yukawa, H.; Blaschek, H. Biomass to Biofuels: Strategies for Global Industries. John Wiley & Sons LTD.: Chicher, West Sussex, UK, 2010. |
25 |
Anastassiadis S. G. World J. Bio. Biotechnol. 2016, 1 (1), 1.
doi: 10.33865/wjb.001.01.0002 |
26 |
Han L. ; Ro K. S. ; Sun K. ; Sun H. ; Wang Z. ; Libra J. A. ; Xing B. Environ. Sci. Technol. 2016, 50 (24), 13274.
doi: 10.1021/acs.est.6b02401 |
27 | Doucet, F. J. Scoping Study on CO2 Mineralization Technologies. Report No. CGS-2011-007-Prepared for South African Centre for Carbon Capture and Storage, 2011. |
28 |
Xie H. ; Yue H. ; Zhu J. ; Liang B. ; Li C. ; Wang Y. ; Xie L. ; Zhou X. Engineering 2015, 1 (1), 150.
doi: 10.15302/J-ENG-2015017 |
29 | https://www.theleadsouthaustria.com.au, Willis, B. Global carbon capture potential for rare nanoparticles, 2020, March 24 (accessed on Sep. 18, 2020). |
30 | Dean, C. Expert Discuss Engineering Feats, Like Space Mirrors to Slow Climate Change; The New York Times: New York, NY, USA, Nov. 10, 2007. |
31 | Gramling, C. In a Climate Crisis, Is Geoengineering Worth the Risks? Science News; Society for Science & the Public: Washington DC, USA, Oct. 6, 2019. |
32 | www.shell.com/energy-and-innovation/the-energy-future/scenarios/shell-scenario-sky.html (accessed on Sep. 18, 2020). |
[1] | 韩慧贤, 陈澜, 赵建成, 于海涛, 汪洋, 闫何恋, 王英雄, 薛智敏, 牟天成. 生物质基酸性低共熔溶剂用于高效溶解木质素及溶解机理[J]. 物理化学学报, 2023, 39(7): 2212043 -0 . |
[2] | 都安邦, 王源璠, 魏志弘, 张东旭, 李理, 杨炜青, 孙千璐, 赵丽丽, 徐伟高, 田玉玺. 不同层数石墨烯的光热显微成像[J]. 物理化学学报, 0, (): 2304027 - . |
[3] | 王晨璐, 宿素玲, 任宁, 张建军. 卤代芳香族羧酸与含氮配体合成镧系配合物的结构、热化学和荧光性质[J]. 物理化学学报, 2023, 39(1): 2206035 -0 . |
[4] | 陈宇新, 王丽君, 姚志波, 郝磊端, 谭心怡, Masa Justus, Robertson Alex W., 孙振宇. 单原子配位结构及与载体相互作用的调控用于二氧化碳电催化还原[J]. 物理化学学报, 2022, 38(11): 2207024 -0 . |
[5] | 李晓明, 高逸丹, 孔庆强, 谢莉婧, 刘卓, 郭晓倩, 刘燕珍, 卫贤贤, 杨晓, 张兴华, 陈成猛. 高结构稳定性、低泄漏率三维铜@石墨烯复合相变材料的制备[J]. 物理化学学报, 2022, 38(1): 2012091 - . |
[6] | 周孟雪, 任宁, 张建军. 2, 4, 6-三甲基苯甲酸与5, 5'-二甲基-2, 2'-联吡啶构筑的系列镧系超分子配合物的晶体结构、热分解机理和性能[J]. 物理化学学报, 2021, 37(10): 2004071 - . |
[7] | 王菲, 陈召龙, 杨嘉炜, 黎豪, 单婧媛, 张峰, 关宝璐, 刘忠范. 石墨烯玻璃透明薄膜加热特性[J]. 物理化学学报, 2021, 37(10): 2001024 - . |
[8] | 郝磊端, 孙振宇. 基于金属氧化物材料的二氧化碳电催化还原[J]. 物理化学学报, 2021, 37(7): 2009033 - . |
[9] | 刘璐, 徐玉萍, 陈霞, 洪梅, 佟静. 1-烷基-3-甲基咪唑氯化物焓变的热重分析[J]. 物理化学学报, 2020, 36(11): 2004014 - . |
[10] | 李明亮, 李硕, 王国治, 郭雪峰. 烷基链工程对两亲有机半导体热力学性能影响的研究[J]. 物理化学学报, 2020, 36(11): 1908036 - . |
[11] | 惠淑荣, 赵丽薇, 刘青山, 宋大勇. [C3mim][NTf2]/DEC/[Li][NTf2]体系的基础性质[J]. 物理化学学报, 2020, 36(11): 1910067 - . |
[12] | 张明, 赵凤起, 杨燕京, 李辉, 张建侃, 马文喆, 高红旭, 李娜. 两种形貌纳米Fe2O3对TKX-50热分解的催化性能研究[J]. 物理化学学报, 2020, 36(6): 1904027 - . |
[13] | 苗静,郭睿凤,刘志宏. BaO∙4B2O3∙5H2O纳米材料的制备及其对聚丙烯阻燃性能的热分解动力学方法评价[J]. 物理化学学报, 2020, 36(6): 1905052 - . |
[14] | 邢肇碧,过治军,张雨微,刘君玲,王玉洁,白光月. SDS对SB3-12胶束表面电荷密度的调控作用及对药物增溶的影响[J]. 物理化学学报, 2020, 36(6): 1906006 - . |
[15] | 谢文,周莲娇,徐娟,郭清莲,蒋风雷,刘义. 生物热化学和热动力学研究进展[J]. 物理化学学报, 2020, 36(6): 1905051 - . |
|