物理化学学报 >> 2014, Vol. 30 >> Issue (4): 686-692.doi: 10.3866/PKU.WHXB201402142
杨加平, 于辉耀, 何瑜庥, 解京选, 毕文彦, 高庆宇
收稿日期:
2013-12-06
修回日期:
2014-02-09
发布日期:
2014-03-31
通讯作者:
高庆宇
E-mail:gaoqy@cumt.edu.cn
基金资助:
国家自然科学基金(21073232,51221462),中央高校基础研究基金(2013XK05)及江苏省高校优势学科平台项目和江苏省普通高校研究生科研创新计划项目(CXLX13-947)资助
YANG Jia-Ping, YU Hui-Yao, HE Yu-Xiu, XIE Jing-Xuan, BI Wen-Yan, GAO Qing-Yu
Received:
2013-12-06
Revised:
2014-02-09
Published:
2014-03-31
Contact:
GAO Qing-Yu
E-mail:gaoqy@cumt.edu.cn
Supported by:
The project was supported by the National Natural Science Foundation of China (21073232, 51221462), Fundamental Research Funds for the Central Universities, China (2013XK05), Priority Academic Program Development of Jiangsu Higher Education Institutions and the Program for Graduate Research and Innovation in Universities of Jiangsu Province, China (CXLX13-947).
摘要:
根据铂电极上硫化物电催化氧化的反应机理,本文提取动力学模型并利用数值模拟研究了N型负微分阻抗(N-NDR)振荡区域的电极表面时空反应动力学. 在均相体系模拟中观察到电流简单振荡和复杂振荡,其来源于双电层电势自催化与传质限制和毒化物种吸附负反馈的相互耦合. 为了更接近于真实体系,在模型中考虑了平行和垂直于电极表面两个方向的传质过程. 模拟结果发现了与实验现象具有相同演化行为的复杂斑图,如行波和闪烁波;同时在传质耦合体系模拟中观察到双电层电势双臂螺旋波. 本研究工作促进对电化学体系时空斑图的理解和预测.
杨加平, 于辉耀, 何瑜庥, 解京选, 毕文彦, 高庆宇. 硫化物在铂电极上电氧化时空动力学的模型模拟和分析[J]. 物理化学学报, 2014, 30(4): 686-692.
YANG Jia-Ping, YU Hui-Yao, HE Yu-Xiu, XIE Jing-Xuan, BI Wen-Yan, GAO Qing-Yu. Model Simulation and Analysis of Spatiotemporal Dynamics for the Electro-Oxidation of Sulfide on Platinum[J]. Acta Phys. -Chim. Sin., 2014, 30(4): 686-692.
(1) O′Brien, J. A.; Hinkley, J. T.; Donne, S.W. Electrochim. Acta 2011, 56, 4224. doi: 10.1016/j.electacta.2011.01.092 (2) Dutta, P. K.; Rabaey, K.; Yuan, Z.; Keller, J. Water Res. 2008, 42, 4965. doi: 10.1016/j.watres.2008.09.007 (3) Cai, J.; Zheng, P. Bioresource Technol. 2013, 128, 760. doi: 10.1016/j.biortech.2012.08.046 (4) Haner, J.; Bejan, D.; Bunce, N. J. J. Appl. Electrochem. 2009, 39, 1733. doi: 10.1007/s10800-009-9873-7 (5) Helms, H.; Schlömer, E.; Jansen,W. Monatsh. Chem. 1998, 129, 617. (6) Miller, B.; Chen, A. J. Electroanal. Chem. 2006, 588, 314. doi: 10.1016/j.jelechem.2006.01.006 (7) Strasser, P.; Eiswirth, M.; Koper, M. T. M. J. Electroanal. Chem. 1999, 478, 50. doi: 10.1016/S0022-0728(99)00412-X (8) Kiss, I. Z.; Sitta, E.; Varela, H. J. Phys. Chem. C 2012, 116, 9561. (9) Feng, J.; Gao, Q.; Xu, L.;Wang, J. Electrochem. Commun. 2005, 7, 1471. doi: 10.1016/j.elecom.2005.10.004 (10) Zhao, Y.;Wang, S.; Varela, H.; Gao, Q.; Hu, X.; Yang, J.; Epstein, I. R. J. Phys. Chem. C 2011, 115, 12965. doi: 10.1021/jp202881h (11) Yang, J.; Song, Y.; Varela, H.; Epstein, I. R.; Bi,W.; Yu, H.; Zhao, Y.; Gao, Q. Electrochim. Acta 2013, 98, 116. doi: 10.1016/j.electacta.2013.03.042 (12) Waterston, K.; Bejan, D.; Bunce, N. J. Appl. Electrochem. 2007, 37, 367. doi: 10.1007/s10800-006-9267-z (13) Parker, G. K.;Watling, K. M.; Hope, G. A.;Woods, R. Colloid. Surf. A: Physicochem. Eng. Aspects 2008, 318, 151. doi: 10.1016/j.colsurfa.2007.12.029 (14) O′Brien, J. A.; Hinkley, J. T.; Donne, S.W.; Lindquist, S. E. Electrochim. Acta 2010, 55, 573. doi: 10.1016/j.electacta.2009.09.067 (15) Hamilton, I. C.;Woods, R. J. Appl. Electrochem. 1983, 13, 783. doi: 10.1007/BF00615828 (16) Krischer, K. In Advance in Electrochemical Science and Engineering;Wielry-VCH:Weinheim, 2003; Vol. 8, pp 90-203. (17) Kapusta, S.; Viehbeck, A.;Wilhelm, S. M.; Hackerman, N. J. Electroanal. Chem. Interfacial Electrochem. 1983, 153, 157. doi: 10.1016/S0022-0728(83)80011-4 (18) Krischer, K.; Varela, H.; Bîrzu, A.; Plenge, F.; Bonnefont, A. Electrochim. Acta 2003, 49, 103. doi: 10.1016/j.electacta.2003.04.006 (19) Mazouz, N.; Krischer, K. J. Phys. Chem. B 2000, 104, 6081. doi: 10.1021/jp000203+ (20) Koper, M. T. M. Electrochim. Acta 1992, 37, 1771. doi: 10.1016/0013-4686(92)85080-5 (21) Flätgen, G.; Krischer, K. J. Chem. Phys. 1995, 103, 5428. doi: 10.1063/1.470578 (22) Galea, N. M.; Kadantsev, E. S.; Ziegler, T. J. Phys. Chem. C 2007, 111, 14457. doi: 10.1021/jp072450k (23) Fu, Y.; Zu, C.; Manthiram, A. J. Am. Chem. Soc. 2013, 135 (48), 18044-7. doi: 10.1021/ja409705u (24) Flätgen, G.; Krischer, K. Phys. Rev. E 1995, 51, 3397. doi: 10.1103/PhysRevB.51.3397 (25) Mazouz, N.; Flätgen, G.; Krischer, K. Phys. Rev. E 1997, 55, 2260. doi: 10.1103/PhysRevE.55.2260 (26) Plenge, F.; Li, Y. J.; Krischer, K. J. Phys. Chem. B 2004, 108, 14255. doi: 10.1021/jp037955z |
[1] | 夏伟锋, 季成宇, 王锐, 裘式纶, 方千荣. 基于四硫富瓦烯的无金属共价有机框架材料用于高效电催化析氧反应[J]. 物理化学学报, 2023, 39(9): 2212057 -0 . |
[2] | 宋千伟, 何观朝, 费慧龙. 基于单原子催化剂的光热催化转化:原理和应用[J]. 物理化学学报, 2023, 39(9): 2212038 -0 . |
[3] | 李萌, 杨甫林, 常进法, Schechter Alex, 冯立纲. MoP-NC纳米球负载Pt纳米粒子用于高效甲醇电解[J]. 物理化学学报, 2023, 39(9): 2301005 -0 . |
[4] | 陈瑶, 陈存, 曹雪松, 王震宇, 张楠, 刘天西. CO2和N2电还原中缺陷及界面工程的最新进展[J]. 物理化学学报, 2023, 39(8): 2212053 -0 . |
[5] | 夏求应, 蔡雨, 刘威, 王金石, 吴川智, 昝峰, 徐璟, 夏晖. 锂负极失效的全固态薄膜锂电池的直接回收再利用[J]. 物理化学学报, 2023, 39(8): 2212051 -0 . |
[6] | 唐生龙, 王春蕾, 蒲想俊, 顾向奎, 陈重学. 水系锌离子电池嵌入负极材料TiX2 (X = S, Se)的储锌机制[J]. 物理化学学报, 2023, 39(8): 2212037 -0 . |
[7] | 屈卓研, 张笑银, 肖茹, 孙振华, 李峰. 有机硫化合物在锂硫电池中的应用[J]. 物理化学学报, 2023, 39(8): 2301019 -0 . |
[8] | 刘元凯, 余涛, 郭少华, 周豪慎. 高性能硫化物基全固态锂电池设计:从实验室到实用化[J]. 物理化学学报, 2023, 39(8): 2301027 -0 . |
[9] | 于彦会, 饶鹏, 封苏阳, 陈民, 邓培林, 李静, 苗政培, 康振烨, 沈义俊, 田新龙. 钴原子团簇用于高效氧还原反应[J]. 物理化学学报, 2023, 39(8): 2210039 -0 . |
[10] | 陈帅, 余创, 罗启悦, 魏超超, 李莉萍, 李广社, 程时杰, 谢佳. 卤化物固态电解质研究进展[J]. 物理化学学报, 2023, 39(8): 2210032 -0 . |
[11] | 赵永智, 陈晨阳, 刘文燚, 胡伟飞, 刘金平. 固态锂电池界面优化策略的研究进展[J]. 物理化学学报, 2023, 39(8): 2211017 -0 . |
[12] | 薛国勇, 李静, 陈俊超, 陈代前, 胡晨吉, 唐凌飞, 陈博文, 易若玮, 沈炎宾, 陈立桅. 单离子聚合物快离子导体[J]. 物理化学学报, 2023, 39(8): 2205012 -0 . |
[13] | 彭林峰, 余创, 魏超超, 廖聪, 陈帅, 张隆, 程时杰, 谢佳. 锂硫银锗矿固态电解质研究进展[J]. 物理化学学报, 2023, 39(7): 2211034 -0 . |
[14] | 赵信硕, 邱海燕, 邵依, 王攀捷, 余石龙, 李海, 周郁斌, 周战, 马录芳, 谭超良. 银纳米粒子修饰的二维金属-有机框架纳米片用于光热增强银离子释放抗菌[J]. 物理化学学报, 2023, 39(7): 2211043 -0 . |
[15] | 鲁航语, 侯瑞林, 褚世勇, 周豪慎, 郭少华. 高比能锂离子电池层状富锂正极材料改性策略研究进展[J]. 物理化学学报, 2023, 39(7): 2211057 -0 . |
|