Acta Phys. -Chim. Sin. ›› 2020, Vol. 36 ›› Issue (9): 1912005.doi: 10.3866/PKU.WHXB201912005
Special Issue: Precise Nanosynthesis
• Review • Previous Articles Next Articles
Tian Li, Xiaojie Hao, Sha Bai, Yufei Zhao(), Yu-Fei Song(
)
Received:
2019-12-02
Accepted:
2019-12-30
Published:
2020-02-14
Contact:
Yufei Zhao,Yu-Fei Song
E-mail:songyf@mail.buct.edu.cn;zhaoyufei@mail.buct.edu.cn
About author:
Emails: zhaoyufei@mail.buct.edu.cn, +86-10-64431832 (Y.S.)Supported by:
Tian Li, Xiaojie Hao, Sha Bai, Yufei Zhao, Yu-Fei Song. Controllable Synthesis and Scale-up Production Prospect of Monolayer Layered Double Hydroxide Nanosheets[J]. Acta Phys. -Chim. Sin. 2020, 36(9), 1912005. doi: 10.3866/PKU.WHXB201912005
Table 1
Monolayer or ultrathinLDH synthesis method."
Number | Method | Thickness | Solvent | Remarks | Ref. |
1 | Organic solvent exfoliation | DDS, butanol | Organic LDH compounds are delaminated in vacuum drying at room temperature | 6 | |
2 | Formamide exfoliation | Amino acids, formamide | The characteristic peak of LDH in XRD disappears, The strong hydrogen bond between the anion and the polar solvent in the intercalation leads to the penetration of a large number of solvents in the intercalation, thus promoting exfoliation | 36 | |
3 | Formamide exfoliation | 0.8 nm | Formamide | No prior modification of amino acids or surfactants is required, requiring approximately 2.5 d and excess formamide | 37 |
4 | Formamide exfoliation | 0.7–1.4 nm | Formamide | The samples were dispersed in formamide and treated with ultrasonic water bath at continuous intervals of 30 min | 41 |
5 | Liquid exfoliation at low temperature | 0.6 nm | Sodium hydroxide/ urea solution | At low temperature, the exfoliation degree was larger, the thickness was reduced to 0.6 nm at -10 ℃ | 42 |
6 | Temperature shock method | ~0.18 nm | H2O | The LDH solution was frozen in liquid nitrogen and then melted in 80 water bath with a delamination rate of 61% | 44 |
7 | Ostwald ripening driven exfoliation | 4–9 nm | H2O, DMF | While, the as-exfoliated nanosheets are still vertically aligned on the electrode and possess a good structural integrity, which exhibits good electrical contact and effectively avoids the restacking of the exfoliated nanosheets | 43 |
8 | Aqueous miscible organic solvent treatment method | H2O, acetone | LDH wet samples were re-dispersed in acetone and stirred for 1 h, then washed with acetone. Dry samples were kept in monolayer | 45 | |
9 | Amino acid reconstruction method | ~0.8–1.5 nm | Amino acids | LDH was calcination in air and then reconstruct in aqueous solution of amino acid | 46 |
10 | Water-Plasma-Enabled Exfoliation | 1.54 nm | H2O | The as-obtained pristine CoFe LDHs were subjected to water-plasma treatment in a dielectric barrier discharge (DBD) plasma reactor for 5 min to obtain ultrathin CoFe LDHs nanosheets | 47 |
11 | Dry Exfoliation | 0.6 nm | Ar dry exfoliation is a clean, time-saving, non-toxic method and avoids the adsorption of solvent molecules | 48 | |
12 | Reverse microemulsion method | 1.5 nm | H2O, iso-octane, DDS, 1-butanol | Particle size in diameter and thickness can be effectively controlled by the ratio of water to surfactant, but surfactant residues are unavoidable | 49 |
13 | One step synthesis by formamide | 0.8 nm | H2O, formamide | The monolayer LDH was synthesized by adding formamide directly during the reaction | 52 |
14 | One-step synthesis by ethylene glycol | 0.85 nm | Ethylene glycol | It remains stable when dispersed in water or dried into powder | 56 |
15 | One step synthesis by H2O2 | 1.44 nm | H2O, H2O2 | LDHs catalyzes the rapid decomposition of H2O2 and releases a large amount of O2, which causes the layers to move violently, resulting in the separation of LDHs layers | 57 |
16 | One step synthesis by NH3·H2O | 0.8 nm | H2O | The gel was synthesized by co-precipitation, washed and re-dispersed by ultrasound in water, and the sample remained stable for 20 d at -4 ℃ | 58 |
Fig 1
Schematic diagram of Liquid exfoliation 38, 43, 46. (a) Schematic illustration of the possible delamination mechanism for LDHs in formamide (Adapted from Ref. 38, Copyright 2006, American Chemical Society); (b) Schematic for the Ostwald ripening driven exfoliation of pristine bulk NiFe-LDH into exfoliated ultrathin nanosheets (Adapted from Ref. 43, Copyright 2018, American Chemical Society); (c) Schematic of amino acid restoration method (Adapted from Ref.46, Copyright 2019, Springer Nature)."
Fig 2
Schematic diagram of Liquid exfoliation method and dry exfoliation method 45, 47, 48. (a) Proposed mechanism for the formation of conventional and new highly dispersed LDHs by the AMOST method (Adapted with permission from Ref. 45 Copyright 2013 Royal Society of Chemistry); (b) CoFe-LDH nanosheets by Ar plasma exfoliation (Adapted with permission from Ref. 48 Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim); (c) Schematic illustration of the water-plasma-enabled exfoliation of CoFe-LDH nanosheets (Adapted with permission from Ref. 47 Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)."
Fig 3
Schematic diagram of the exfoliation method with organic addition 50, 53, 56. (a) Schematic representation for the formation of monolayer-NiTi-LDH nanosheets in micelles (Adapted with permission from Ref. 50 Copyright 2015 Royal Society of Chemistry); (b) Synthetic strategy used for the synthesis of ultrafine monolayer LDH nanosheets (Adapted with permission from Ref. 53 Copyright 2015 Royal Society of Chemistry); (c) Schematic illustration for formation and structure of CoAl-CO32--SL-LDH and CoAl-CO32--LDH (Adapted from Ref. 56, Copyright 2017, American Chemical Society)."
Fig 4
Schematic diagram of the exfoliation method without organic addition 57, 58. (a) Suggested scheme for synthesizing exfoliated MgAl-LDH ultrathin nanosheets (Adapted from Ref. 57, Copyright 2017, American Chemical Society); (b) Schematic illustration of the formation mechanism of LDH SLNSs (Adapted from Elsevier publisher). "
Fig 5
Separate nucleation and aging steps method and Scale Preparation 21, 22, 62. TEM of Mg2Al-LDH using (a) conventional coprecipitation at constant pH (b) separate nucleation and aging steps method; (c) The particle diameter distribution for Mg2Al-LDH using separate nucleation and aging steps method (Adapted from Ref. 21, Copyright 2002, American Chemical Society); (d) Schematic illustration of a colloid mill (Adapted with permission from Ref. 22 Copyright 2006 Royal Society of Chemistry); (e) Industrial plant for clean production technology of atomic economic reaction of layered materials. "
Fig 6
Characterization of the monolayer LDH 44, 45, 55. (a) XRD patterns of pristine LDHs and LNS16, the delaminated LDH nanosheets obtained after 16 cycles of temperature shock (Adapted from Elsevier publisher); (b) XRD patterns of Zn2Al-borate LDH and Mg3Al-borate LDH synthesized by conventional co-precipitation (washing with water) and the AMOST method (Adapted with permission from Ref. 45 Copyright 2013 Royal Society of Chemistry); TEM images of (c) b-NiAl- LDH and (d) f-NiAl-LDH; (e), (f) HRTEM images of m-NiAl-LDH; (g) The FFT pattern of (f); (h) AFM image of m-NiAl-LDH; (i) Height profiles of m-NiAl-LDH in (h) (Adapted with permission from Ref. 55 Copyright 2019 Wiley□VCH Verlag GmbH & Co. KGaA, Weinheim). "
Fig 7
Characterization of the monolayer LDH 64, 48. (a) the wavelet transforms for the k2-weighted EXAFS signals of Ru1/mono-NiFe0.3, RuO2 and Ru-Foil; (b) the magnitude of k2-weighted Fourier transforms of the Ru K-edge EXAFS spectra for Ru1/mono-NiFe0.3, Ru1/mono-NiFe1.6, RuO2 and Ru-Foil; (c) schematic illustration of Ru 1/mono-NiFe-x (Adapted with permission from Ref. 64 Copyright 2013 Royal Society of Chemistry); (d) magnitude of k3-weighted Fourier transforms of the Co edge XANES spectra for bulk CoFe-LDH and ultrathin CoFe-LDH-Ar with the corresponding curve-fitting results; (e) magnitude of the k3-weighted Fourier transforms of the Fe edge XANES spectra for bulk CoFe-LDH and ultrathin CoFe-LDH-Ar (Adapted with permission from Ref. 48 Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). "
Fig 8
Characterization of the monolayer LDH 55. (a) The side view of each CO2 reduction intermediate on m-NiAl-LDH (VNi&OH); (b) Gibbs free energy diagram for H2 evolution on m-NiAl-LDH (VNi&OH), with Gibbs free energy barrier labeled; (c) The projected density of states with the defect state and conduction band minimum (CBM) labeled (Adapted with permission from Ref. 55 Copyright 2019 Wiley□VCH Verlag GmbH & Co. KGaA, Weinheim)."
Fig 11
Photocatalytic performance test 65, 55. (a) Time course of CO evolution in the photocatalytic conversion of CO2 in the presence water vapor under UV-Vis light (Adapted with permission from Ref. 65 Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim); (b) The selectivity of CH4, CO and H2 in photocatalytic CO2 reduction (CO2PR) on NiAl-LDH under irradiation above 400 nm; (c) the selectivity of CH4, CO and H2 in CO2PR on m-NiAl-LDH under irradiation with different wavelength (Adapted with permission from Ref. 55 Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim). "
Fig 12
Electrocatalytic performance test 47. The OER performance of ultrathin CoFe-LDH-Ar nanosheets. (a) LSV curves for OER on pristine CoFe-LDH and the water-plasma exfoliated CoFe-LDH nanosheets; (b) The corresponding Tafel plots (Adapted with permission from Ref. 47 Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). "
1 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306 (5696), 666.
doi: 10.1126/science.1102896 |
2 |
Wang N. ; Yang G. ; Wang H. X. ; Yan C. Z. ; Sun R. ; Wong C. P. Mater. Today 2019, 27, 33.
doi: 10.1016/j.mattod.2018.10.039 |
3 |
Manzeli S. ; Ovchinnikov D. ; Pasquier D. ; Yazyev O. V. ; Kis A. Nat. Rev. Mater. 2017, 2 (8), 17033.
doi: 10.1038/natrevmats.2017.33 |
4 |
Zhao H. X. ; Yu H. T. ; Quan X. ; Chen S. ; Zhao H. M. ; Wang H. RSC Adv. 2014, 4 (2), 624.
doi: 10.1039/c3ra45776a |
5 |
McAteer D. ; Godwin I. J. ; Ling Z. ; Harvey A. ; He L. ; Boland C. S. ; Vega-Mayoral V. ; Szydłowska B. ; Rovetta A. A. ; Backes C. ; et al Adv. Energy Mater. 2018, 8 (15), 1702965.
doi: 10.1002/aenm.201702965 |
6 |
Adachi-Pagano M. ; Forano C. ; Besse J. P. Chem. Commun. 2000, (1), 91.
doi: 10.1039/A908251D |
7 | Qiu J. S. ; An Y. L. ; Li Q. X. ; Zhou Y. ; Yang Q. Acta Phys. -Chim. Sin. 2004, 20, 260. |
邱介山; 安玉良; 李杞秀; 周颖; 杨青. 物理化学学报, 2004, 20, 260.
doi: 10.3866/PKU.WHXB201608233 |
|
8 | Mai L. Q. ; Yang S. ; Han C. H. ; Xu L. ; Xu X. ; Pi Y. Q. Acta Phys. -Chim. Sin. 2011, 27, 1551. |
麦立强; 杨霜; 韩春华; 徐林; 许絮; 皮玉强. 物理化学学报, 2011, 27, 1551.
doi: 10.3866/PKU.WHXB20110710 |
|
9 |
Liu Z. N. ; Xu K. L. ; Sun H. ; Yin S. Y. Small 2015, 11 (18), 2182.
doi: 10.1002/smll.201402222 |
10 |
Li X. D. ; Sun Y. F. ; Xu J. Q. ; Shao Y. J. ; Wu J. ; Xu X. L. ; Pan Y. ; Ju H. X. ; Zhu J. F. ; Xie Y. Nat. Energy 2019, 4 (8), 690.
doi: 10.1038/s41560-019-0431-1 |
11 |
Di J. ; Xia J. X. ; Chisholm M. F. ; Zhong J. ; Chen C. ; Cao X. Z. ; Dong F. ; Chi Z. ; Chen H. L. ; Weng Y. X. ; et al Adv. Mater. 2019, 31 (28), e1807576.
doi: 10.1002/adma.201807576 |
12 |
Shi L. R. ; Chen K. ; Du R. ; Bachmatiuk A. ; Rümmeli M. H. ; Priydarshi M. K. ; Zhang Y. F. ; Manivannan A. ; Liu Z. F. Small 2015, 11 (47), 6302.
doi: 10.1002/smll.201502013 |
13 |
Dan Y. P. ; Lu Y. ; Kybert N. J. ; Luo Z. T. ; Johnson A. T. C. Nano Lett. 2009, 9 (4), 1472.
doi: 10.1021/nl8033637 |
14 |
Ohno Y. ; Maehashi K. ; Yamashiro Y. ; Matsumoto K. Nano Lett. 2009, 9 (9), 3318.
doi: 10.1021/nl901596m |
15 |
Wu X. W. ; Li H. P. ; Song S. ; Zhang R. J. ; Hou W. G. Int. J. Pharm. 2013, 454 (1), 453.
doi: 10.1016/j.ijpharm.2013.06.043 |
16 |
Zhao M. Q. ; Zhang Q. ; Huang J. Q. ; Wei F. Adv. Funct. Mater. 2012, 22 (4), 675.
doi: 10.1002/adfm.201102222 |
17 |
Khan A. I. ; Ragavan A. ; Fong B. ; Markland C. ; O'Brien M. ; Dunbar T. G. ; Williams G. R. ; O'Hare D. Ind. Eng. Chem. Res. 2009, 48 (23), 10196.
doi: 10.1021/ie9012612 |
18 |
Kim S. J. Polym. Sci., Part B: Polym. Phys. 2003, 41 (9), 936.
doi: 10.1002/polb.10453 |
19 |
Lin Y. J. ; Li D. Q. ; Evans D. G. ; Duan X. Polym. Degrad. Stab. 2005, 88 (2), 286.
doi: 10.1016/j.polymdegradstab.2004.11.007 |
20 |
Guo S. C. ; Li D. Q. ; Zhang W. F. ; Pu M. ; Evans D. G. ; Duan X. J. Solid State Chem. 2004, 177 (12), 4597.
doi: 10.1016/j.jssc.2004.09.028 |
21 |
Zhao Y. ; Li F. ; Zhang R. ; Evans D. G. ; Duan X. Chem. Mater. 2002, 14 (10), 4286.
doi: 10.1021/cm020370h |
22 |
Evans D. G. ; Duan X. Chem. Commun. 2006, (5), 485.
doi: 10.1039/b510313b |
23 |
Zhao Y. F. ; Li B. ; Wang Q. ; Gao W. ; Wang C. L. J. ; Wei M. ; Evans D. G. ; Duan X. ; O'Hare D. Chem. Sci. 2014, 5 (3), 951.
doi: 10.1039/c3sc52546e |
24 |
Zhao Y. F. ; Tan L. ; Xu Y. Q. ; Wang Z. L. ; Song Y. F. ; Wang J. K. ; Hao X. J. Chin. Sci. Bull. 2018, 63 (34), 3598.
doi: 10.1360/n972018-00839 |
25 |
Wang Q. ; O'Hare D. Chem. Rev. 2012, 112 (7), 4124.
doi: 10.1021/cr200434v |
26 |
Yu J. F. ; Wang Q. ; O'Hare D. ; Sun L. Y. Chem. Soc. Rev. 2017, 46 (19), 5950.
doi: 10.1039/c7cs00318h |
27 |
Meyn M. ; Beneke K. ; Lagaly G. Inorg. Chem. 1990, 29 (26), 5201.
doi: 10.1021/ic00351a013 |
28 |
Negrete; Letoffe J. M. ; Putaux J. L. ; David L. ; Bourgeat-Lami E. Langmuir 2004, 20 (5), 1564.
doi: 10.1021/la0349267 |
29 |
Okay O. ; Oppermann W. Macromolecules 2007, 40 (9), 3378.
doi: 10.1021/ma062929v |
30 |
Jobbágy M. ; Iyi N. J. Phys. Chem. C 2010, 114 (42), 18153.
doi: 10.1021/jp1078778 |
31 |
Klebow B. ; Meleshyn A. Langmuir 2011, 27 (21), 12968.
doi: 10.1021/la202493z |
32 |
O'Leary S. ; O'Hare D. ; Seeley G. Chem. Commun. 2002, (14), 1506.
doi: 10.1039/b204213d |
33 |
Jobbágy M. ; Regazzoni A. E. J. Colloid Interface Sci. 2004, 275 (1), 345.
doi: 10.1016/j.jcis.2004.01.082 |
34 |
Naik V. V. ; Ramesh T. N. ; Vasudevan S. J. Phys. Chem. Lett. 2011, 2 (10), 1193.
doi: 10.1021/jz2004655 |
35 |
Naik V. V. ; Vasudevan S. Langmuir 2011, 27 (21), 13276.
doi: 10.1021/la202876g |
36 |
Hibino T. ; Jones W. J. Mater. Chem. 2001, 11 (5), 1321.
doi: 10.1039/b101135i |
37 |
Li L. ; Ma R. Z. ; Ebina Y. ; Iyi N. ; Sasaki T. Chem. Mater. 2005, 17 (17), 4386.
doi: 10.1021/cm0510460 |
38 |
Liu Z. P. ; Ma R. Z. ; Osada M. ; Iyi N. ; Ebina Y. ; Takada K. ; Sasaki T. J. Am. Chem. Soc. 2006, 128 (14), 4872.
doi: 10.1021/ja0584471 |
39 |
Song F. ; Hu X. L. Nat. Commun. 2014, 5, 4477.
doi: 10.1038/ncomms5477 |
40 |
Fan K. ; Chen H. ; Ji Y. F. ; Huang H. ; Claesson P. M. ; Daniel Q. ; Philippe B. ; Rensmo H. ; Li F. S. ; Luo Y. ; et al Nat. Commun. 2016, 7, 11981.
doi: 10.1038/ncomms11981 |
41 |
Wu Q. L. ; Olafsen A. ; Vistad ; Ø. B. ; Roots J. ; Norby P. J. Mater. Chem. 2005, 15 (44), 4695.
doi: 10.1039/b511184f |
42 |
Wei Y. ; Li F. C. ; Liu L. RSC Adv. 2014, 4 (35), 18044.
doi: 10.1039/c3ra46995f |
43 |
Chen B. ; Zhang Z. ; Kim S. ; Lee S. ; Lee J. ; Kim W. ; Yong K. ACS Appl. Mater. Interfaces 2018, 10 (51), 44518.
doi: 10.1021/acsami.8b16962 |
44 |
Zhang Z. N. ; Min L. F. ; Chen P. ; Zhang W. ; Wang Y. X. Mater. Lett. 2017, 195, 198.
doi: 10.1016/j.matlet.2017.02.088 |
45 |
Wang Q. ; O'Hare D. Chem. Commun. 2013, 49 (56), 6301.
doi: 10.1039/c3cc42918k |
46 |
Yu J. F. ; Ruengkajorn K. ; Crivoi D. G. ; Chen C. P. ; Buffet J. C. ; O'Hare D. Nat. Commun. 2019, 10, 2398.
doi: 10.1038/s41467-019-10362-2 |
47 |
Liu R. ; Wang Y. Y. ; Liu D. D. ; Zou Y. Q. ; Wang S. Y. Adv. Mater. 2017, 29 (30), 1701546.
doi: 10.1002/adma.201701546 |
48 |
Wang Y. Y. ; Zhang Y. Q. ; Liu Z. J. ; Xie C. ; Feng S. ; Liu D. D. ; Shao M. F. ; Wang S. Y. Angew. Chem. Int. Ed. 2017, 56 (21), 5867.
doi: 10.1002/anie.201701477 |
49 |
Hu G. ; Wang N. ; O'Hare D. ; Davis J. Chem. Commun. 2006, (3), 287.
doi: 10.1039/b514368c |
50 |
Zhao Y. F. ; Wang Q. ; Bian T. ; Yu H. J. ; Fan H. ; Zhou C. ; Wu L. Z. ; Tung C. H. ; O'Hare D. ; Zhang T. R. Nanoscale 2015, 7 (16), 7168.
doi: 10.1039/c5nr01320h |
51 |
Jia X. D. ; Zhao Y. F. ; Chen G. B. ; Shang L. ; Shi R. ; Kang X. F. ; Waterhouse G. I. N. ; Wu L. Z. ; Tung C. H. ; Zhang T. R. Adv. Energy Mater. 2016, 6 (10), 1502585.
doi: 10.1002/aenm.201502585 |
52 |
Yu J. F. ; Martin B. R. ; Clearfield A. ; Luo Z. P. ; Sun L. Y. Nanoscale 2015, 7 (21), 9448.
doi: 10.1039/c5nr01077b |
53 |
Zhao Y. F. ; Zhang X. ; Jia X. D. ; Waterhouse G. I. N. ; Shi R. ; Zhang X. R. ; Zhan F. ; Tao Y. ; Wu L. Z. ; Tung C. H. ; et al Adv. Energy Mater. 2018, 8, 1703585.
doi: 10.1002/aenm.201703585 |
54 |
Zhang X. ; Zhao Y. F. ; Zhao Y. X. ; Shi R. ; Waterhouse G. I. N. ; Zhang T. R. Adv. Energy Mater. 2019, 9 (24), 1900881.
doi: 10.1002/aenm.201900881 |
55 |
Tan L. ; Xu S. M. ; Wang Z. L. ; Xu Y. Q. ; Wang X. ; Hao X. J. ; Bai S. ; Ning C. J. ; Wang Y. ; Zhang W. K. ; et al Angew. Chem. Int. Ed. 2019, 58 (34), 11860.
doi: 10.1002/anie.201904246 |
56 |
Li H. Q. ; Tran T. N. ; Lee B. J. ; Zhang C. F. ; Park J. D. ; Kang T. H. ; Yu J. S. ACS Appl. Mater. Interfaces 2017, 9 (24), 20294.
doi: 10.1021/acsami.7b02912 |
57 |
Yan Y. X. ; Liu Q. ; Wang J. ; Wei J. B. ; Gao Z. ; Mann T. ; Li Z. S. ; He Y. ; Zhang M. L. ; Liu L. H. J. Colloid Interface Sci. 2012, 371 (1), 15.
doi: 10.1016/j.jcis.2011.12.075 |
58 |
Zhang Y. P. ; Li H. P. ; Du N. ; Zhang R. J. ; Hou W. G. Colloids Surface A 2016, 501, 49.
doi: 10.1016/j.colsurfa.2016.04.046 |
59 |
Zhao Y. F. ; Zhao Y. X. ; Waterhouse G. I. N. ; Zheng L. R. ; Cao X. Z. ; Teng F. ; Wu L. Z. ; Tung C. H. ; O'Hare D. ; Zhang T. R. Adv. Mater. 2017, 29 (42), 1703828.
doi: 10.1002/adma.201703828 |
60 | Song, Y. F.; Bai, S.; Zhao, Y. F.; Li, T. Scale-up Production of Monolayer Layered Double Hydroxide Nanosheets. China Patent ZL202010089388.2. |
宋宇飞,白莎,赵宇飞,李天.一种规模化制备单层水滑石纳米片材料的方法:中国, ZL202010089388.2[P]. | |
61 | Song, J. Q.; Xu, X. Y.; Lin, Y. J.; Li, D. Q.; Duan, X. Synthesis of Nano-layered Composite Metal Hydroxide. China Patent ZL200910084976.0, 2010-12-08. |
宋家庆,徐向宇,林彦军,李殿卿,段雪.一种纳米层状复合金属氢氧化物的制备方法:中国, ZL200910084976.0[P]. 2010-12-08. | |
62 | http://www.gzs.buct.edu.cn/kycg/yyyjcg/85007.htm. |
63 |
Yan D. F. ; Li Y. X. ; Huo J. ; Chen R. ; Dai L. M. ; Wang S. Y. Adv. Mater. 2017, 29 (48), 1606459.
doi: 10.1002/adma.201606459 |
64 |
Wang Z. L. ; Xu S. M. ; Xu Y. Q. ; Tan L. ; Wang X. ; Zhao Y. F. ; Duan H. H. ; Song Y. F. Chem. Sci. 2019, 10 (2), 378.
doi: 10.1039/c8sc04480e |
65 |
Zhao Y. F. ; Chen G. B. ; Bian T. ; Zhou C. ; Waterhouse G. I. N. ; Wu L. Z. ; Tung C. H. ; Smith L. J. ; O'Hare D. ; Zhang T. R. Adv. Mater. 2015, 27 (47), 7824.
doi: 10.1002/adma.201503730 |
66 |
Chen S. C. ; Wang H. ; Kang Z. X. ; Jin S. ; Zhang X. D. ; Zheng X. S. ; Qi Z. M. ; Zhu J. F. ; Pan B. C. ; Xie Y. Nat. Commun. 2019, 10, 788.
doi: 10.1038/s41467-019-08697-x |
67 |
Huo W. C. ; Cao T. ; Liu X. Y. ; Xu W. N. ; Dong B. Q. ; Zhang Y. X. ; Dong F. Green Energy Environ. 2019, 4 (3), 270.
doi: 10.1016/j.gee.2018.11.001 |
68 |
Xiong P. ; Zhang X. Y. ; Wan H. ; Wang S. J. ; Zhao Y. F. ; Zhang J. Q. ; Zhou D. ; Gao W. C. ; Ma R. Z. ; Sasaki T. ; et al Nano Lett. 2019, 19 (7), 4518.
doi: 10.1021/acs.nanolett.9b01329 |
69 |
Li Z. H. ; Liu K. ; Fan K. ; Yang Y. S. ; Shao M. F. ; Wei M. ; Duan X. Angew. Chem. Int. Ed. 2019, 58 (12), 3962.
doi: 10.1002/anie.201814705 |
70 |
Werner S. ; Lau V. W. h. ; Hug S. ; Duppel V. ; Clausen-Schaumann H. ; Lotsch B. V. Langmuir 2013, 29 (29), 9199.
doi: 10.1021/la400846w |
71 |
Peng L. Q. ; Mei X. ; He J. ; Xu J. K. ; Zhang W. K. ; Liang R. Z. ; Wei M. ; Evans D. G. ; Duan X. Adv. Mater. 2018, 30 (16), 1707389.
doi: 10.1002/adma.201707389 |
[1] | Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2 [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212053-0. |
[2] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[3] | Yanpeng Fu, Changbao Zhu. Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209002-0. |
[4] | Tao Zhang, Simin Gong, Ping Chen, Qi Chen, Liwei Chen. Incorporation of a Polyfluorinated Acrylate Additive for High-Performance Quasi-2D Perovskite Light-Emitting Diodes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301024-. |
[5] | Haoran Lu, Yaqing Wei, Run Long. Charge Localization Induced by Nanopore Defects in Monolayer Black Phosphorus for Suppressing Nonradiative Electron-Hole Recombination through Time-Domain Simulation [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006064-. |
[6] | Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005007-. |
[7] | Aidi Han, Xiaohui Yan, Junren Chen, Xiaojing Cheng, Junliang Zhang. Effects of Dispersion Solvents on Proton Conduction Behavior of Ultrathin Nafion Films in the Catalyst Layers of Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912052-. |
[8] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[9] | Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2011073-. |
[10] | Yuan Yin, Zhendong Guo, Gaoyuan Chen, Huifeng Zhang, Wan-Jian Yin. Recent Progress in Defect Tolerance and Defect Passivation in Halide Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008048-. |
[11] | Sai Zhang, Mingkai Zhang, Yongquan Qu. Solid Frustrated Lewis Pairs Constructed on CeO2 for Small-Molecule Activation [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1911050-. |
[12] | Zhiming LIU, Guoliang LIU, Xinlin HONG. Influence of Surface Defects and Palladium Deposition on the Activity of CdS Nanocrystals for Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2019, 35(2): 215-222. |
[13] | Xinke LIU,Jiale WANG,Chuyu XU,Jiangliu LUO,Disi LIANG,Yunuo CEN,Youming LÜ,Zhiwen LI. Temperature-Dependent Phonon Shifts in Mono-layer, Few-layer, and Bulk WS2 Films [J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1134-1141. |
[14] | Long CHENG,Gongping LIU,Wanqin JIN. Recent Progress in Two-dimensional-material Membranes for Gas Separation [J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1090-1098. |
[15] | Nanshu LIU,Si ZHOU,Jijun ZHAO. Electrical Conductance of Graphene with Point Defects [J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1142-1149. |
|